BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22001780)

  • 41. Taxonomic utility of a phylogenetic analysis of phosphoglycerate kinase proteins of Archaea, Bacteria, and Eukaryota: insights by Bayesian analyses.
    Pollack JD; Li Q; Pearl DK
    Mol Phylogenet Evol; 2005 May; 35(2):420-30. PubMed ID: 15804412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase.
    Labedan B; Xu Y; Naumoff DG; Glansdorff N
    Mol Biol Evol; 2004 Feb; 21(2):364-73. PubMed ID: 14660694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.
    Santoro AE; Casciotti KL; Francis CA
    Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum.
    Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM
    Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The heme-copper oxidase superfamily shares a Zn2+-binding motif at the entrance to a proton pathway.
    Lee HJ; Ädelroth P
    FEBS Lett; 2013 Mar; 587(6):770-4. PubMed ID: 23399935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context.
    Bartossek R; Nicol GW; Lanzen A; Klenk HP; Schleper C
    Environ Microbiol; 2010 Apr; 12(4):1075-88. PubMed ID: 20132279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and function of bacterial nitric oxide reductases: nitric oxide reductase, anaerobic enzymes.
    Shiro Y
    Biochim Biophys Acta; 2012 Oct; 1817(10):1907-13. PubMed ID: 22425814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A.
    Rauhamäki V; Wikström M
    Biochim Biophys Acta; 2014 Jul; 1837(7):999-1003. PubMed ID: 24583065
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular organization of selected prokaryotic S-layer proteins.
    Claus H; Akça E; Debaerdemaeker T; Evrard C; Declercq JP; Harris JR; Schlott B; König H
    Can J Microbiol; 2005 Sep; 51(9):731-43. PubMed ID: 16391651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phylogeny of Rieske/cytb complexes with a special focus on the Haloarchaeal enzymes.
    Baymann F; Schoepp-Cothenet B; Lebrun E; van Lis R; Nitschke W
    Genome Biol Evol; 2012; 4(8):720-9. PubMed ID: 22798450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase.
    Borisov VB; Forte E; Sarti P; Brunori M; Konstantinov AA; Giuffrè A
    FEBS Lett; 2006 Sep; 580(20):4823-6. PubMed ID: 16904110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes.
    Baymann F; Lebrun E; Brugna M; Schoepp-Cothenet B; Giudici-Orticoni MT; Nitschke W
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):267-74. PubMed ID: 12594934
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On K-peptide length in composition vector phylogeny of prokaryotes.
    Zuo G; Li Q; Hao B
    Comput Biol Chem; 2014 Dec; 53 Pt A():166-73. PubMed ID: 25205031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Homologous protein domains in superkingdoms Archaea, Bacteria, and Eukaryota and the problem of the origin of eukaryotes].
    Markov AV; Kulikov AM
    Izv Akad Nauk Ser Biol; 2005; (4):389-400. PubMed ID: 16212260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria.
    Pérez-Rueda E; Collado-Vides J
    J Mol Evol; 2001 Sep; 53(3):172-9. PubMed ID: 11523004
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The origins of modern proteomes.
    Kurland CG; Canbäck B; Berg OG
    Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of multiple haloarchaeal genomes suggests that the quinone-dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environments.
    Torregrosa-Crespo J; González-Torres P; Bautista V; Esclapez JM; Pire C; Camacho M; Bonete MJ; Richardson DJ; Watmough NJ; Martínez-Espinosa RM
    Environ Microbiol Rep; 2017 Dec; 9(6):788-796. PubMed ID: 28925557
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene.
    Mihajlovski A; Alric M; Brugère JF
    Res Microbiol; 2008; 159(7-8):516-21. PubMed ID: 18644435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.
    Zumft WG; Kroneck PM
    Adv Microb Physiol; 2007; 52():107-227. PubMed ID: 17027372
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolutionary history of redox metal-binding domains across the tree of life.
    Harel A; Bromberg Y; Falkowski PG; Bhattacharya D
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7042-7. PubMed ID: 24778258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.