These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 2200222)

  • 1. [Pathogenesis of congenital heart defects: fiction and truth].
    Pexieder T
    Z Kardiol; 1990 May; 79(5):315-23. PubMed ID: 2200222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the Mf1 gene in developing mouse hearts: implication in the development of human congenital heart defects.
    Swiderski RE; Reiter RS; Nishimura DY; Alward WL; Kalenak JW; Searby CS; Stone EM; Sheffield VC; Lin JJ
    Dev Dyn; 1999 Sep; 216(1):16-27. PubMed ID: 10474162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract.
    Chen YH; Ishii M; Sun J; Sucov HM; Maxson RE
    Dev Biol; 2007 Aug; 308(2):421-37. PubMed ID: 17601530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing scene in cardiac embryology.
    Pexieder T
    Herz; 1979 Apr; 4(2):73-7. PubMed ID: 447192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac outflow tract septation process in the mouse model of transposition of the great arteries.
    Yasui H; Nakazawa M; Morishima M; Ando M; Takao A; Aikawa E
    Teratology; 1997 Jun; 55(6):353-63. PubMed ID: 9294880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vitamin A on endocardial cushion development in the mouse heart.
    Davis LA; Sadler TW
    Teratology; 1981 Oct; 24(2):139-48. PubMed ID: 6175036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal stages of cardiac organogenesis in the mouse: II. Development of the internal relief of the heart.
    Vuillemin M; Pexieder T
    Am J Anat; 1989 Feb; 184(2):114-28. PubMed ID: 2712003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome.
    Stalmans I
    Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular malformations among preterm infants.
    Tanner K; Sabrine N; Wren C
    Pediatrics; 2005 Dec; 116(6):e833-8. PubMed ID: 16322141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pathogenesis of spontaneously occurring anomalies of the ventricular outflow tract in Keeshond dogs: embryologic studies.
    Van Mierop LH; Patterson DF
    Birth Defects Orig Artic Ser; 1978; 14(7):361-75. PubMed ID: 737306
    [No Abstract]   [Full Text] [Related]  

  • 11. Closure of the interventricular foramen and morphogenesis of the membranous septum and ventricular septal defects in the human heart.
    Conte G; Grieco M
    Anat Anz; 1984; 155(1-5):39-55. PubMed ID: 6721204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aortic arch anomalies associated with the administration of epinephrine in chick embryos.
    Hodach RJ; Gilbert EF; Fallon JF
    Teratology; 1974 Apr; 9(2):203-9. PubMed ID: 4824750
    [No Abstract]   [Full Text] [Related]  

  • 13. Normal stages of cardiac organogenesis in the mouse: I. Development of the external shape of the heart.
    Vuillemin M; Pexieder T
    Am J Anat; 1989 Feb; 184(2):101-13. PubMed ID: 2712002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination.
    Ramsdell AF
    Dev Biol; 2005 Dec; 288(1):1-20. PubMed ID: 16289136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ductus venosus blood flow alterations in fetuses with obstructive lesions of the right heart.
    Berg C; Kremer C; Geipel A; Kohl T; Germer U; Gembruch U
    Ultrasound Obstet Gynecol; 2006 Aug; 28(2):137-42. PubMed ID: 16826561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding heart development and congenital heart defects through developmental biology: a segmental approach.
    Sakabe M; Matsui H; Sakata H; Ando K; Yamagishi T; Nakajima Y
    Congenit Anom (Kyoto); 2005 Dec; 45(4):107-18. PubMed ID: 16359490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle.
    deAlmeida A; McQuinn T; Sedmera D
    Circ Res; 2007 May; 100(9):1363-70. PubMed ID: 17413043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left-right lineage analysis of the embryonic Xenopus heart reveals a novel framework linking congenital cardiac defects and laterality disease.
    Ramsdell AF; Bernanke JM; Trusk TC
    Development; 2006 Apr; 133(7):1399-410. PubMed ID: 16527986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries.
    Bajolle F; Zaffran S; Kelly RG; Hadchouel J; Bonnet D; Brown NA; Buckingham ME
    Circ Res; 2006 Feb; 98(3):421-8. PubMed ID: 16397144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoplasia of cushion ridges in the proximal outflow tract elicits formation of a right ventricle-to-aortic route in retinoic acid-induced complete transposition of the great arteries in the mouse: scanning electron microscopic observations of corrosion cast models.
    Nakajima Y; Hiruma T; Nakazawa M; Morishima M
    Anat Rec; 1996 May; 245(1):76-82. PubMed ID: 8731043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.