BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22002226)

  • 1. A rapid and efficient method for isolating high quality DNA from leaves of carnivorous plants from the Drosera genus.
    Biteau F; Nisse E; Hehn A; Miguel S; Hannewald P; Bourgaud F
    Mol Biotechnol; 2012 Jul; 51(3):247-53. PubMed ID: 22002226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis.
    Hatcher CR; Sommer U; Heaney LM; Millett J
    Ann Bot; 2021 Aug; 128(3):301-314. PubMed ID: 34077503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis.
    Pavlovič A; Krausko M; Libiaková M; Adamec L
    Ann Bot; 2014 Jan; 113(1):69-78. PubMed ID: 24201141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin.
    Mithöfer A; Reichelt M; Nakamura Y
    Plant Biol (Stuttg); 2014 Sep; 16(5):982-7. PubMed ID: 24499476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field-Grown and In Vitro Propagated Round-Leaved Sundew (
    Tienaho J; Reshamwala D; Karonen M; Silvan N; Korpela L; Marjomäki V; Sarjala T
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208192
    [No Abstract]   [Full Text] [Related]  

  • 6. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey.
    Matusíková I; Salaj J; Moravcíková J; Mlynárová L; Nap JP; Libantová J
    Planta; 2005 Dec; 222(6):1020-7. PubMed ID: 16049675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.).
    Jopcik M; Moravcikova J; Matusikova I; Bauer M; Rajninec M; Libantova J
    Planta; 2017 Feb; 245(2):313-327. PubMed ID: 27761648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia.
    Millett J; Foot GW; Svensson BM
    Sci Total Environ; 2015 Apr; 512-513():631-636. PubMed ID: 25655989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase.
    Michalko J; Renner T; Mészáros P; Socha P; Moravčíková J; Blehová A; Libantová J; Polóniová Z; Matušíková I
    Planta; 2017 Jan; 245(1):77-91. PubMed ID: 27580619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenolic metabolites in carnivorous plants: Inter-specific comparison and physiological studies.
    Kováčik J; Klejdus B; Repčáková K
    Plant Physiol Biochem; 2012 Mar; 52():21-7. PubMed ID: 22305064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases.
    Michalko J; Socha P; Mészáros P; Blehová A; Libantová J; Moravčíková J; Matušíková I
    Planta; 2013 Oct; 238(4):715-25. PubMed ID: 23832529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis.
    Shahzadi I; Ahmed R; Hassan A; Shah MM
    Genet Mol Res; 2010 Mar; 9(1):386-93. PubMed ID: 20309824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified acidic approach for DNA extraction from plant species containing high levels of secondary metabolites.
    Cavallari MM; Siqueira MV; Val TM; Pavanelli JC; Monteiro M; Grando C; Pinheiro JB; Zucchi MI; Gimenes MA
    Genet Mol Res; 2014 Aug; 13(3):6497-502. PubMed ID: 25158268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function.
    Foot G; Rice SP; Millett J
    Biol Lett; 2014; 10(4):20131024. PubMed ID: 24740904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and efficient method for isolation of DNA in high mucilaginous plant tissues.
    Echevarría-Machado I; Sánchez-Cach LA; Hernández-Zepeda C; Rivera-Madrid R; Moreno-Valenzuela OA
    Mol Biotechnol; 2005 Oct; 31(2):129-35. PubMed ID: 16170213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae).
    Arai N; Ohno Y; Jumyo S; Hamaji Y; Ohyama T
    J Exp Bot; 2021 Feb; 72(5):1946-1961. PubMed ID: 33247920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae) - future perspectives and ethnopharmacological relevance.
    Egan PA; van der Kooy F
    Chem Biodivers; 2013 Oct; 10(10):1774-90. PubMed ID: 24130022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spotlight on prey-induced metabolite dynamics in sundew. A commentary on: 'Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis'.
    Mithöfer A
    Ann Bot; 2021 Aug; 128(3):v-vi. PubMed ID: 34302338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plant Drosera adelae.
    Okabe T; Yoshimoto I; Hitoshi M; Ogawa T; Ohyama T
    FEBS Lett; 2005 Oct; 579(25):5729-33. PubMed ID: 16225872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf NPK stoichiometry, δ
    Givnish TJ; Shiba ZW
    Ecology; 2022 Dec; 103(12):e3825. PubMed ID: 35861100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.