These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 22002393)
1. Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Li X; Ding Y; Shao J; Liu H; Tian H Opt Lett; 2011 Oct; 36(20):4083-5. PubMed ID: 22002393 [TBL] [Abstract][Full Text] [Related]
2. A new method for fabricating high density and large aperture ratio liquid microlens array. Ren H; Ren D; Wu ST Opt Express; 2009 Dec; 17(26):24183-8. PubMed ID: 20052129 [TBL] [Abstract][Full Text] [Related]
3. A high numerical aperture, polymer-based, planar microlens array. Tripathi A; Chokshi TV; Chronis N Opt Express; 2009 Oct; 17(22):19908-18. PubMed ID: 19997214 [TBL] [Abstract][Full Text] [Related]
5. Brightness field distributions of microlens arrays using micro molding. Cheng HC; Huang CF; Lin Y; Shen YK Opt Express; 2010 Dec; 18(26):26887-904. PubMed ID: 21196966 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of linear diffusers based on concave micro lens arrays. Bitterli R; Scharf T; Herzig HP; Noell W; de Rooij N; Bich A; Roth S; Weible KJ; Voelkel R; Zimmermann M; Schmidt M Opt Express; 2010 Jun; 18(13):14251-61. PubMed ID: 20588560 [TBL] [Abstract][Full Text] [Related]
7. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation. Hwang SJ; Liu YX; Porter GA Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649 [TBL] [Abstract][Full Text] [Related]
8. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic. Hung KY; Fan CC; Tseng FG; Chen YK Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621 [TBL] [Abstract][Full Text] [Related]
9. Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature. Li X; Tian H; Ding Y; Shao J; Wei Y ACS Appl Mater Interfaces; 2013 Oct; 5(20):9975-82. PubMed ID: 23902897 [TBL] [Abstract][Full Text] [Related]
10. Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting. Miccio L; Paturzo M; Grilli S; Vespini V; Ferraro P Opt Lett; 2009 Apr; 34(7):1075-7. PubMed ID: 19340224 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding. Ferrell N; Woodard J; Hansford D Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840 [TBL] [Abstract][Full Text] [Related]
13. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Chen F; Liu H; Yang Q; Wang X; Hou C; Bian H; Liang W; Si J; Hou X Opt Express; 2010 Sep; 18(19):20334-43. PubMed ID: 20940925 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the role of template features on the electrically induced structure formation (EISF) for a faithful duplication. Tian H; Shao J; Chen X; Jiang W; Wang L; Ding Y Electrophoresis; 2017 Apr; 38(8):1105-1112. PubMed ID: 28306173 [TBL] [Abstract][Full Text] [Related]
16. Micro-optical polarizer with high efficiency. Ruffieux P; Scharf T; Herzig HP Opt Express; 2008 Feb; 16(3):2023-36. PubMed ID: 18542282 [TBL] [Abstract][Full Text] [Related]
17. Polarization independent adaptive microlens with a blue-phase liquid crystal. Li Y; Wu ST Opt Express; 2011 Apr; 19(9):8045-50. PubMed ID: 21643053 [TBL] [Abstract][Full Text] [Related]
18. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation. Milton H; Brimicombe P; Morgan P; Gleeson H; Clamp J Opt Express; 2012 May; 20(10):11159-65. PubMed ID: 22565739 [TBL] [Abstract][Full Text] [Related]