These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 22002561)
1. Increasing phosphoproteomic coverage through sequential digestion by complementary proteases. Gilmore JM; Kettenbach AN; Gerber SA Anal Bioanal Chem; 2012 Jan; 402(2):711-20. PubMed ID: 22002561 [TBL] [Abstract][Full Text] [Related]
2. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach. Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782 [TBL] [Abstract][Full Text] [Related]
3. Variable Digestion Strategies for Phosphoproteomics Analysis. Gonczarowska-Jorge H; Dell'Aica M; Dickhut C; Zahedi RP Methods Mol Biol; 2016; 1355():225-39. PubMed ID: 26584929 [TBL] [Abstract][Full Text] [Related]
4. PhosphoShield: Improving Trypsin Digestion of Phosphoproteins by Shielding the Negatively Charged Phosphate Moiety. Bubis JA; Gorshkov V; Gorshkov MV; Kjeldsen F J Am Soc Mass Spectrom; 2020 Oct; 31(10):2053-2060. PubMed ID: 32840367 [TBL] [Abstract][Full Text] [Related]
5. Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides. Tsai CF; Smith JS; Krajewski K; Zhao R; Moghieb AM; Nicora CD; Xiong X; Moore RJ; Liu T; Smith RD; Jacobs JM; Rajagopal S; Shi T Anal Chem; 2019 Sep; 91(18):11606-11613. PubMed ID: 31418558 [TBL] [Abstract][Full Text] [Related]
6. Proteomics and phosphoproteomics of C Perron N; Tan B; Dufresne CP; Chen S Methods Enzymol; 2022; 676():347-368. PubMed ID: 36280357 [TBL] [Abstract][Full Text] [Related]
7. Phosphoproteome Profiling Using an Isobaric Carrier without the Need for Phosphoenrichment. Kwon Y; Lee S; Park N; Ju S; Shin S; Yoo S; Lee H; Lee C Anal Chem; 2022 Mar; 94(10):4192-4200. PubMed ID: 35239305 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteomic analysis reveals site-specific changes in GFAP and NDRG2 phosphorylation in frontotemporal lobar degeneration. Herskowitz JH; Seyfried NT; Duong DM; Xia Q; Rees HD; Gearing M; Peng J; Lah JJ; Levey AI J Proteome Res; 2010 Dec; 9(12):6368-79. PubMed ID: 20886841 [TBL] [Abstract][Full Text] [Related]
9. Multi-in-One: Multiple-Proteases, One-Hour-Shot Strategy for Fast and High-Coverage Phosphoproteomic Investigation. Gao X; Li Q; Liu Y; Zeng R Anal Chem; 2020 Jul; 92(13):8943-8951. PubMed ID: 32479063 [TBL] [Abstract][Full Text] [Related]
10. Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Wiśniewski JR; Mann M Anal Chem; 2012 Mar; 84(6):2631-7. PubMed ID: 22324799 [TBL] [Abstract][Full Text] [Related]
11. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells. Ye X; Li L Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630 [TBL] [Abstract][Full Text] [Related]
12. Improved method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip for versatile analysis of phosphorylation dynamics. Nabetani T; Kim YJ; Watanabe M; Ohashi Y; Kamiguchi H; Hirabayashi Y Proteomics; 2009 Dec; 9(24):5525-33. PubMed ID: 19834909 [TBL] [Abstract][Full Text] [Related]
13. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674 [TBL] [Abstract][Full Text] [Related]
15. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066 [TBL] [Abstract][Full Text] [Related]
16. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Gauci S; Helbig AO; Slijper M; Krijgsveld J; Heck AJ; Mohammed S Anal Chem; 2009 Jun; 81(11):4493-501. PubMed ID: 19413330 [TBL] [Abstract][Full Text] [Related]
17. Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells. Yi L; Tsai CF; Dirice E; Swensen AC; Chen J; Shi T; Gritsenko MA; Chu RK; Piehowski PD; Smith RD; Rodland KD; Atkinson MA; Mathews CE; Kulkarni RN; Liu T; Qian WJ Anal Chem; 2019 May; 91(9):5794-5801. PubMed ID: 30843680 [TBL] [Abstract][Full Text] [Related]
18. An initial characterization of the serum phosphoproteome. Zhou W; Ross MM; Tessitore A; Ornstein D; Vanmeter A; Liotta LA; Petricoin EF J Proteome Res; 2009 Dec; 8(12):5523-31. PubMed ID: 19824718 [TBL] [Abstract][Full Text] [Related]
19. Expanding proteome coverage with orthogonal-specificity α-lytic proteases. Meyer JG; Kim S; Maltby DA; Ghassemian M; Bandeira N; Komives EA Mol Cell Proteomics; 2014 Mar; 13(3):823-35. PubMed ID: 24425750 [TBL] [Abstract][Full Text] [Related]
20. Phosphoproteomic Analysis of Signaling Pathways in Lymphomas. Häupl B; Urlaub H; Oellerich T Methods Mol Biol; 2019; 1956():371-381. PubMed ID: 30779046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]