BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 22002794)

  • 1. Enrichment techniques employed in phosphoproteomics.
    Fíla J; Honys D
    Amino Acids; 2012 Sep; 43(3):1025-47. PubMed ID: 22002794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in phosphopeptide enrichment techniques for phosphoproteomics.
    Beltran L; Cutillas PR
    Amino Acids; 2012 Sep; 43(3):1009-24. PubMed ID: 22821267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technologies and challenges in large-scale phosphoproteomics.
    Engholm-Keller K; Larsen MR
    Proteomics; 2013 Mar; 13(6):910-31. PubMed ID: 23404676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thylakoid phosphoproteins: identification of phosphorylation sites.
    Rokka A; Aro EM; Vener AV
    Methods Mol Biol; 2011; 684():171-86. PubMed ID: 20960130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments.
    Courcelles M; Bridon G; Lemieux S; Thibault P
    J Proteome Res; 2012 Jul; 11(7):3753-65. PubMed ID: 22668510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of the Arabidopsis phosphoproteome using a biotin-tagging approach.
    Kwon SJ; Choi EY; Seo JB; Park OK
    Mol Cells; 2007 Oct; 24(2):268-75. PubMed ID: 17978581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells.
    Santamaría E; Sánchez-Quiles V; Fernández-Irigoyen J; Corrales FJ
    Methods Mol Biol; 2012; 909():165-80. PubMed ID: 22903716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis.
    Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W
    Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics.
    Ray BN; Kweon HK; Argetsinger LS; Fingar DC; Andrews PC; Carter-Su C
    Mol Endocrinol; 2012 Jun; 26(6):1056-73. PubMed ID: 22570334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Phosphorylated Proteins Using Mass Spectrometry.
    Yu LR; Veenstra TD
    Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis.
    Stensballe A; Andersen S; Jensen ON
    Proteomics; 2001 Feb; 1(2):207-22. PubMed ID: 11680868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry.
    Aryal UK; Krochko JE; Ross AR
    J Proteome Res; 2012 Jan; 11(1):425-37. PubMed ID: 22092075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome.
    McNulty DE; Annan RS
    Methods Mol Biol; 2009; 527():93-105, x. PubMed ID: 19241008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
    Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL
    J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phosphoproteomics using acetone-based peptide labeling: method evaluation and application to a cardiac ischemia/reperfusion model.
    Wijeratne AB; Manning JR; Schultz Jel J; Greis KD
    J Proteome Res; 2013 Oct; 12(10):4268-79. PubMed ID: 24016359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MALDI-TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome.
    Ruprecht B; Roesli C; Lemeer S; Kuster B
    Proteomics; 2016 May; 16(10):1447-56. PubMed ID: 26990019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.