These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 22002794)

  • 1. Enrichment techniques employed in phosphoproteomics.
    Fíla J; Honys D
    Amino Acids; 2012 Sep; 43(3):1025-47. PubMed ID: 22002794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in phosphopeptide enrichment techniques for phosphoproteomics.
    Beltran L; Cutillas PR
    Amino Acids; 2012 Sep; 43(3):1009-24. PubMed ID: 22821267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technologies and challenges in large-scale phosphoproteomics.
    Engholm-Keller K; Larsen MR
    Proteomics; 2013 Mar; 13(6):910-31. PubMed ID: 23404676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thylakoid phosphoproteins: identification of phosphorylation sites.
    Rokka A; Aro EM; Vener AV
    Methods Mol Biol; 2011; 684():171-86. PubMed ID: 20960130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments.
    Courcelles M; Bridon G; Lemieux S; Thibault P
    J Proteome Res; 2012 Jul; 11(7):3753-65. PubMed ID: 22668510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of the Arabidopsis phosphoproteome using a biotin-tagging approach.
    Kwon SJ; Choi EY; Seo JB; Park OK
    Mol Cells; 2007 Oct; 24(2):268-75. PubMed ID: 17978581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of affinity chromatography, 2D DIGE, and mass spectrometry to analyze the phosphoproteome of liver progenitor cells.
    Santamaría E; Sánchez-Quiles V; Fernández-Irigoyen J; Corrales FJ
    Methods Mol Biol; 2012; 909():165-80. PubMed ID: 22903716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis.
    Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W
    Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research resource: identification of novel growth hormone-regulated phosphorylation sites by quantitative phosphoproteomics.
    Ray BN; Kweon HK; Argetsinger LS; Fingar DC; Andrews PC; Carter-Su C
    Mol Endocrinol; 2012 Jun; 26(6):1056-73. PubMed ID: 22570334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Phosphorylated Proteins Using Mass Spectrometry.
    Yu LR; Veenstra TD
    Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis.
    Stensballe A; Andersen S; Jensen ON
    Proteomics; 2001 Feb; 1(2):207-22. PubMed ID: 11680868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry.
    Aryal UK; Krochko JE; Ross AR
    J Proteome Res; 2012 Jan; 11(1):425-37. PubMed ID: 22092075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome.
    McNulty DE; Annan RS
    Methods Mol Biol; 2009; 527():93-105, x. PubMed ID: 19241008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
    Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL
    J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phosphoproteomics using acetone-based peptide labeling: method evaluation and application to a cardiac ischemia/reperfusion model.
    Wijeratne AB; Manning JR; Schultz Jel J; Greis KD
    J Proteome Res; 2013 Oct; 12(10):4268-79. PubMed ID: 24016359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MALDI-TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome.
    Ruprecht B; Roesli C; Lemeer S; Kuster B
    Proteomics; 2016 May; 16(10):1447-56. PubMed ID: 26990019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.