These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22002838)
1. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Chen Z; Cui Q; Liang C; Sun L; Tian J; Liao H Proteomics; 2011 Dec; 11(24):4648-59. PubMed ID: 22002838 [TBL] [Abstract][Full Text] [Related]
2. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Wang Y; Li P; Cao X; Wang X; Zhang A; Li X Biochem Biophys Res Commun; 2009 Jan; 378(4):799-803. PubMed ID: 19084500 [TBL] [Abstract][Full Text] [Related]
3. The PEP-carboxylase kinase gene family in Glycine max (GmPpcK1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants. Xu W; Sato SJ; Clemente TE; Chollet R Plant J; 2007 Mar; 49(5):910-23. PubMed ID: 17257170 [TBL] [Abstract][Full Text] [Related]
5. Transcription profiling of soybean nodulation by Bradyrhizobium japonicum. Brechenmacher L; Kim MY; Benitez M; Li M; Joshi T; Calla B; Lee MP; Libault M; Vodkin LO; Xu D; Lee SH; Clough SJ; Stacey G Mol Plant Microbe Interact; 2008 May; 21(5):631-45. PubMed ID: 18393623 [TBL] [Abstract][Full Text] [Related]
6. Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. Lim CW; Lee YW; Hwang CH Plant Cell Physiol; 2011 Sep; 52(9):1613-27. PubMed ID: 21757457 [TBL] [Abstract][Full Text] [Related]
7. Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max). Antunes F; Aguilar M; Pineda M; Sodek L Physiol Plant; 2008 Aug; 133(4):736-43. PubMed ID: 18384503 [TBL] [Abstract][Full Text] [Related]
8. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Ahsan N; Donnart T; Nouri MZ; Komatsu S J Proteome Res; 2010 Aug; 9(8):4189-204. PubMed ID: 20540562 [TBL] [Abstract][Full Text] [Related]
9. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Guo W; Zhao J; Li X; Qin L; Yan X; Liao H Plant J; 2011 May; 66(3):541-52. PubMed ID: 21261763 [TBL] [Abstract][Full Text] [Related]
10. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N Chen L; Qin L; Zhou L; Li X; Chen Z; Sun L; Wang W; Lin Z; Zhao J; Yamaji N; Ma JF; Gu M; Xu G; Liao H New Phytol; 2019 Mar; 221(4):2013-2025. PubMed ID: 30317659 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. Chen Z; Yan W; Sun L; Tian J; Liao H J Proteomics; 2016 Jun; 143():151-160. PubMed ID: 27045940 [TBL] [Abstract][Full Text] [Related]
12. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621 [TBL] [Abstract][Full Text] [Related]
13. Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes. Mo X; Zhang M; Liang C; Cai L; Tian J Plant Physiol Biochem; 2019 Jun; 139():697-706. PubMed ID: 31054472 [TBL] [Abstract][Full Text] [Related]
14. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean. Li C; Li C; Zhang H; Liao H; Wang X Physiol Plant; 2017 Feb; 159(2):215-227. PubMed ID: 27762446 [TBL] [Abstract][Full Text] [Related]
15. Comparative proteomic analysis of soybean nodulation using a supernodulation mutant, SS2-2. Lim CW; Park JY; Lee SH; Hwang CH Biosci Biotechnol Biochem; 2010; 74(12):2396-404. PubMed ID: 21150121 [TBL] [Abstract][Full Text] [Related]
16. Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Fan XD; Wang JQ; Yang N; Dong YY; Liu L; Wang FW; Wang N; Chen H; Liu WC; Sun YP; Wu JY; Li HY Gene; 2013 Jan; 512(2):392-402. PubMed ID: 23063936 [TBL] [Abstract][Full Text] [Related]
17. Identification of phosphorus deficiency responsive proteins in a high phosphorus acquisition soybean (Glycine max) cultivar through proteomic analysis. Sha A; Li M; Yang P Biochim Biophys Acta; 2016 May; 1864(5):427-34. PubMed ID: 26853500 [TBL] [Abstract][Full Text] [Related]
18. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. Komatsu S; Yamamoto R; Nanjo Y; Mikami Y; Yunokawa H; Sakata K J Proteome Res; 2009 Oct; 8(10):4766-78. PubMed ID: 19658438 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Nouri MZ; Komatsu S Proteomics; 2010 May; 10(10):1930-45. PubMed ID: 20209511 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection. Mazarei M; Puthoff DP; Hart JK; Rodermel SR; Baum TJ Mol Plant Microbe Interact; 2002 Jun; 15(6):577-86. PubMed ID: 12059106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]