These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 22002857)
1. Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption. Andreazza R; Okeke BC; Pieniz S; Camargo FA Biol Trace Elem Res; 2012 Apr; 146(1):107-15. PubMed ID: 22002857 [TBL] [Abstract][Full Text] [Related]
2. Biosorption and bioreduction of copper from different copper compounds in aqueous solution. Andreazza R; Okeke BC; Pieniz S; Bento FM; Camargo FA Biol Trace Elem Res; 2013 Jun; 152(3):411-6. PubMed ID: 23417495 [TBL] [Abstract][Full Text] [Related]
3. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Andreazza R; Okeke BC; Lambais MR; Bortolon L; de Melo GW; Camargo FA Chemosphere; 2010 Nov; 81(9):1149-54. PubMed ID: 20937516 [TBL] [Abstract][Full Text] [Related]
4. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Andreazza R; Pieniz S; Wolf L; Lee MK; Camargo FA; Okeke BC Sci Total Environ; 2010 Mar; 408(7):1501-7. PubMed ID: 20117823 [TBL] [Abstract][Full Text] [Related]
5. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors. Rathi M; Nandabalan YK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9723-9733. PubMed ID: 28251535 [TBL] [Abstract][Full Text] [Related]
6. [Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens]. Sun L; He L; Zhang Y; Zhang W; Wang Q; Sheng X Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1360-6. PubMed ID: 20069883 [TBL] [Abstract][Full Text] [Related]
7. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
8. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Chen X; Shi J; Chen Y; Xu X; Xu S; Wang Y Can J Microbiol; 2006 Apr; 52(4):308-16. PubMed ID: 16699581 [TBL] [Abstract][Full Text] [Related]
9. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Zhang WH; Huang Z; He LY; Sheng XF Chemosphere; 2012 Jun; 87(10):1171-8. PubMed ID: 22397839 [TBL] [Abstract][Full Text] [Related]
10. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste. Andreazza R; Okeke BC; Pieniz S; Bortolon L; Lambais MR; Camargo FA Biol Trace Elem Res; 2012 Apr; 146(1):124-33. PubMed ID: 21947860 [TBL] [Abstract][Full Text] [Related]
12. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
13. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial activity of bacteria associated with the rhizosphere and phyllosphere of Avena fatua and Brachiaria reptans. Ali M; Walait S; Farhan Ul Haque M; Mukhtar S Environ Sci Pollut Res Int; 2021 Dec; 28(48):68846-68861. PubMed ID: 34282546 [TBL] [Abstract][Full Text] [Related]
15. Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA. Andreazza R; Okeke BC; Pieniz S; Brandelli A; Lambais MR; Camargo FA Biol Trace Elem Res; 2011 Nov; 143(2):1182-92. PubMed ID: 21104339 [TBL] [Abstract][Full Text] [Related]
16. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Menezes Bento F; de Oliveira Camargo FA; Okeke BC; Frankenberger WT Microbiol Res; 2005; 160(3):249-55. PubMed ID: 16035236 [TBL] [Abstract][Full Text] [Related]
17. Cohnella plantaginis sp. nov., a novel nitrogen-fixing species isolated from plantain rhizosphere soil. Wang LY; Chen SF; Wang L; Zhou YG; Liu HC Antonie Van Leeuwenhoek; 2012 Jun; 102(1):83-9. PubMed ID: 22543748 [TBL] [Abstract][Full Text] [Related]
18. Effect of natamycin on the enumeration, genetic structure and composition of bacterial community isolated from soils and soybean rhizosphere. Mohamed MA; Ranjard L; Catroux C; Catroux G; Hartmann A J Microbiol Methods; 2005 Jan; 60(1):31-40. PubMed ID: 15567222 [TBL] [Abstract][Full Text] [Related]
19. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils. Aaen KN; Holm PE; Priemé A; Hung NN; Brandt KK Environ Toxicol Chem; 2011 Mar; 30(3):588-95. PubMed ID: 21298704 [TBL] [Abstract][Full Text] [Related]
20. [Distribution of microbes and their hereditary diversity in the rhizosphere of carnation in greenhouse]. Gao X; He S; Guan H; Tang S; Li W; Chen X Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):811-8. PubMed ID: 21866707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]