BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 22002893)

  • 1. Ab initio multireference investigation of disjoint diradicals: singlet versus triplet ground states.
    Chattopadhyay S; Chaudhuri RK; Mahapatra US
    Chemphyschem; 2011 Oct; 12(15):2791-7. PubMed ID: 22002893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular applications of analytical gradient approach for the improved virtual orbital-complete active space configuration interaction method.
    Chaudhuri RK; Chattopadhyay S; Mahapatra US; Freed KF
    J Chem Phys; 2010 Jan; 132(3):034105. PubMed ID: 20095726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing the ground state of the disjoint diradical tetramethyleneethane with quantum Monte Carlo.
    Pozun ZD; Su X; Jordan KD
    J Am Chem Soc; 2013 Sep; 135(37):13862-9. PubMed ID: 23947763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry optimization of radicaloid systems using improved virtual orbital-complete active space configuration interaction (IVO-CASCI) analytical gradient method.
    Chattopadhyay S; Chaudhuri RK; Freed KF
    J Phys Chem A; 2011 Apr; 115(16):3665-78. PubMed ID: 20586459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved virtual orbital multireference Møller-Plesset study of the ground and excited electronic states of protonated acetylene, C2H3+.
    Chaudhuri RK; Freed KF
    J Chem Phys; 2008 Aug; 129(5):054308. PubMed ID: 18698901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of an efficient multireference approach to free-base porphin and metalloporphyrins: ground, excited, and positive ion states.
    Chaudhuri RK; Freed KF; Chattopadhyay S; Mahapatra US
    J Chem Phys; 2011 Aug; 135(8):084118. PubMed ID: 21895170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of improved virtual orbital based multireference methods to N2, LiF, and C4H6 systems.
    Chattopadhyay S; Chaudhuri RK; Mahapatra US
    J Chem Phys; 2008 Dec; 129(24):244108. PubMed ID: 19123496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of electronic structure of organic radicaloid anions using efficient, economical multireference gradient approach.
    Chattopadhyay S; Chaudhuri RK; Freed KF
    Phys Chem Chem Phys; 2011 Apr; 13(16):7514-23. PubMed ID: 21423953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential energy curve for isomerization of N2H2 and C2H4 using the improved virtual orbital multireference Møller-Plesset perturbation theory.
    Chaudhuri RK; Freed KF; Chattopadhyay S; Sinha Mahapatra U
    J Chem Phys; 2008 Apr; 128(14):144304. PubMed ID: 18412442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-specific multireference perturbation theory with improved virtual orbitals: taming the ground state of F2 , Be2, and N2.
    Chattopadhyay S; Chaudhuri RK; Mahapatra US
    J Comput Chem; 2015 May; 36(12):907-25. PubMed ID: 25740004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intersystem crossings of the triplet and singlet States in cobalt and copper mononitrosyls.
    Uzunova EL
    J Phys Chem A; 2009 Oct; 113(42):11266-72. PubMed ID: 19788202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taming the Electronic Structure of Diradicals through the Window of Computationally Cost Effective Multireference Perturbation Theory.
    Sinha Ray S; Ghosh A; Chattopadhyay S; Chaudhuri RK
    J Phys Chem A; 2016 Jul; 120(29):5897-916. PubMed ID: 27355260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of excited states of C(3).
    Terentyev A; Scholz R; Schreiber M; Seifert G
    J Chem Phys; 2004 Sep; 121(12):5767-76. PubMed ID: 15367001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry optimization using improved virtual orbitals: a complete active space numerical gradient approach.
    Chaudhuri RK; Freed KF
    J Chem Phys; 2007 Mar; 126(11):114103. PubMed ID: 17381192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological control of spin states in disjoint diradicals.
    Lenington MJ; Wenthold PG
    J Phys Chem A; 2010 Jan; 114(3):1334-7. PubMed ID: 19743864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study.
    Perun S; Tatchen J; Marian CM
    Chemphyschem; 2008 Feb; 9(2):282-92. PubMed ID: 18189251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synergy between qualitative theory, quantitative calculations, and direct experiments in understanding, calculating, and measuring the energy differences between the lowest singlet and triplet states of organic diradicals.
    Lineberger WC; Borden WT
    Phys Chem Chem Phys; 2011 Jul; 13(25):11792-813. PubMed ID: 21614391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics.
    Baloïtcha E; Balint-Kurti GG
    J Chem Phys; 2005 Jul; 123(1):014306. PubMed ID: 16035834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The predicted spectrum and singlet-triplet interaction of the hypermetallic molecule SrOSr.
    Ostojić B; Jensen P; Schwerdtfeger P; Bunker PR
    J Phys Chem A; 2013 Oct; 117(39):9370-9. PubMed ID: 23506078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating Disjoint Non-Kekulé Diradicals with Quantum Monte Carlo: The Tetramethyleneethane Molecule through the Jastrow Antisymmetrized Geminal Power Wave Function.
    Barborini M; Coccia E
    J Chem Theory Comput; 2015 Dec; 11(12):5696-704. PubMed ID: 26642986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.