BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22003183)

  • 1. MCNPX alpha particle dose estimate to the skin tissue from a low-enriched uranium fuel fragment.
    Atanackovic J
    Radiat Prot Dosimetry; 2012 Jun; 150(2):223-30. PubMed ID: 22003183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha particles at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.A.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Mar; 138(4):310-9. PubMed ID: 19933695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The local skin dose conversion coefficients of electrons, protons and alpha particles calculated using the Geant4 code.
    Zhang B; Dang B; Wang Z; Wei W; Li W
    Radiat Prot Dosimetry; 2013 Oct; 156(4):514-7. PubMed ID: 23610196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the photon dose calculation model in the VARSKIN 4 skin dose computer code.
    Sherbini S; Decicco J; Struckmeyer R; Saba M; Bush-Goddard S
    Health Phys; 2012 Dec; 103(6):763-9. PubMed ID: 23111523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.
    Copeland K; Friedberg W; Sato T; Niita K
    Radiat Prot Dosimetry; 2012 Feb; 148(3):344-51. PubMed ID: 21474471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.
    Aydarous ASh
    Radiat Prot Dosimetry; 2008; 130(2):141-8. PubMed ID: 18223183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of natural background gamma radiation with depleted uranium micro-particles in the human body.
    Pattison JE
    J Radiol Prot; 2013 Mar; 33(1):187-98. PubMed ID: 23295360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helions at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Dec; 142(2-4):99-109. PubMed ID: 21138924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tritons at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Dec; 142(2-4):110-9. PubMed ID: 21036809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluence to absorbed dose, effective dose and gray equivalent conversion coefficients for iron nuclei from 10 MeV to 1 TeV, calculated using Monte Carlo radiation transport code MCNPX 2.7.A.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2010 Mar; 138(4):353-62. PubMed ID: 19942625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verification of the VARSKIN beta skin dose calculation computer code.
    Sherbini S; DeCicco J; Gray AT; Struckmeyer R
    Health Phys; 2008 Jun; 94(6):527-38. PubMed ID: 18469586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deuterons at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C.
    Copeland K; Parker DE; Friedberg W
    Radiat Prot Dosimetry; 2011 Jan; 143(1):17-26. PubMed ID: 20980368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation protection in inhomogeneous beta-gamma fields and modelling of hand phantoms with MCNPX.
    Blunck Ch; Becker F; Hegenbart L; Heide B; Schimmelpfeng J; Urban M
    Radiat Prot Dosimetry; 2009 Feb; 134(1):13-22. PubMed ID: 19395711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of voxel geometries for MCNP-based radiation dose calculations.
    Zhang J; Bednarz B; Xu XG
    Health Phys; 2006 Nov; 91(5 Suppl):S59-65. PubMed ID: 17023800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo analysis of possible cell dose enhancement effects by uranium microparticles in photon fields.
    Eakins JS; Jansen JT; Tanner RJ
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):177-80. PubMed ID: 21148167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric validation of the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy.
    Zhang H; Johnson EL; Zwicker RD
    Int J Radiat Oncol Biol Phys; 2006 Dec; 66(5):1576-83. PubMed ID: 17126214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between effective doses for voxel-based and stylized exposure models from photon and electron irradiation.
    Kramer R; Khoury HJ; Vieira JW
    Phys Med Biol; 2005 Nov; 50(21):5105-26. PubMed ID: 16237244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of volume- and surface-distributed activity sources on surface doses.
    Aydarous ASh
    Radiat Prot Dosimetry; 2010 Sep; 141(1):64-71. PubMed ID: 20484164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo calculations of the dose distribution around a commercial gynecologic tandem applicator.
    Gifford KA; Mourtada F; Cho SH; Lawyer A; Horton JL
    Radiother Oncol; 2005 Nov; 77(2):210-5. PubMed ID: 16216363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of cellular irradiation techniques with alpha particles using the Geant4 Monte Carlo simulation toolkit.
    Incerti S; Gault N; Habchi C; Lefaix JL; Moretto P; Poncy JL; Pouthier T; Seznec H
    Radiat Prot Dosimetry; 2006; 122(1-4):327-9. PubMed ID: 17132663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.