These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 22003245)
1. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Li J; Witten DM; Johnstone IM; Tibshirani R Biostatistics; 2012 Jul; 13(3):523-38. PubMed ID: 22003245 [TBL] [Abstract][Full Text] [Related]
2. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Li J; Tibshirani R Stat Methods Med Res; 2013 Oct; 22(5):519-36. PubMed ID: 22127579 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of RNA-Seq and its dependence on sequencing depth. Cai G; Li H; Lu Y; Huang X; Lee J; Müller P; Ji Y; Liang S BMC Bioinformatics; 2012; 13 Suppl 13(Suppl 13):S5. PubMed ID: 23320920 [TBL] [Abstract][Full Text] [Related]
4. Is this the right normalization? A diagnostic tool for ChIP-seq normalization. Angelini C; Heller R; Volkinshtein R; Yekutieli D BMC Bioinformatics; 2015 May; 16():150. PubMed ID: 25957089 [TBL] [Abstract][Full Text] [Related]
5. Sample size calculation while controlling false discovery rate for differential expression analysis with RNA-sequencing experiments. Bi R; Liu P BMC Bioinformatics; 2016 Mar; 17():146. PubMed ID: 27029470 [TBL] [Abstract][Full Text] [Related]
6. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Klambauer G; Schwarzbauer K; Mayr A; Clevert DA; Mitterecker A; Bodenhofer U; Hochreiter S Nucleic Acids Res; 2012 May; 40(9):e69. PubMed ID: 22302147 [TBL] [Abstract][Full Text] [Related]
7. Statistical tools for transgene copy number estimation based on real-time PCR. Yuan JS; Burris J; Stewart NR; Mentewab A; Stewart CN BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S6. PubMed ID: 18047729 [TBL] [Abstract][Full Text] [Related]
8. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. Li P; Piao Y; Shon HS; Ryu KH BMC Bioinformatics; 2015 Oct; 16():347. PubMed ID: 26511205 [TBL] [Abstract][Full Text] [Related]
9. Empirical estimation of sequencing error rates using smoothing splines. Zhu X; Wang J; Peng B; Shete S BMC Bioinformatics; 2016 Apr; 17():177. PubMed ID: 27102907 [TBL] [Abstract][Full Text] [Related]
10. False discovery rates: a new deal. Stephens M Biostatistics; 2017 Apr; 18(2):275-294. PubMed ID: 27756721 [TBL] [Abstract][Full Text] [Related]
11. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data. Jain N; Cho H; O'Connell M; Lee JK BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779 [TBL] [Abstract][Full Text] [Related]
12. A classification approach for DNA methylation profiling with bisulfite next-generation sequencing data. Cheng L; Zhu Y Bioinformatics; 2014 Jan; 30(2):172-9. PubMed ID: 24273245 [TBL] [Abstract][Full Text] [Related]
13. A statistical method for the detection of variants from next-generation resequencing of DNA pools. Bansal V Bioinformatics; 2010 Jun; 26(12):i318-24. PubMed ID: 20529923 [TBL] [Abstract][Full Text] [Related]
14. An optimal test with maximum average power while controlling FDR with application to RNA-seq data. Si Y; Liu P Biometrics; 2013 Sep; 69(3):594-605. PubMed ID: 23889143 [TBL] [Abstract][Full Text] [Related]