These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22003274)

  • 1. Physicochemical interaction of antitumor acridinone derivatives with DNA in view of QSAR studies.
    Koba M; Bączek T
    Med Chem Res; 2011 Nov; 20(8):1385-1393. PubMed ID: 22003274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of artificial neural networks for the prediction of antitumor activity of a series of acridinone derivatives.
    Koba M
    Med Chem; 2012 May; 8(3):309-19. PubMed ID: 22530901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evaluation of multivariate adaptive regression splines for the prediction of antitumor activity of acridinone derivatives.
    Koba M; Bączek T
    Med Chem; 2013 Dec; 9(8):1041-50. PubMed ID: 23339321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of connected QSRR and QSAR strategies to predict the physicochemical interaction of acridinone derivatives with DNA.
    Szatkowska-Wandas P; Koba M; Kuchcicka A; Kurek S; Daghir-Wojtkowiak E; Bączek T
    Comb Chem High Throughput Screen; 2014; 17(10):820-6. PubMed ID: 25387726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of retention data from affinity and reverse-phase high-performance liquid chromatography on antitumor activity prediction of imidazoacridinones using QSAR strategy.
    Koba M; Bączek T; Marszałł MP
    J Pharm Biomed Anal; 2012 May; 64-65():87-93. PubMed ID: 22417615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Structure-Activity Relationship Study of Camptothecin Derivatives as Anticancer Drugs Using Molecular Descriptors.
    Ahmadinejad N; Shafiei F
    Comb Chem High Throughput Screen; 2019; 22(6):387-399. PubMed ID: 31284856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring QSARs of some benzenesulfonamides incorporating cyanoacrylamide moieties as a carbonic anhydrase inhibitors (specifically against tumor-associated isoforms IX and XII).
    Alafeefy AM; Abdel-Aziz HA; Carta F; Supuran CT; Pathak SK; Prasad O; Sinha L
    J Enzyme Inhib Med Chem; 2015; 30(4):519-23. PubMed ID: 25198893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools.
    Roy K; Mandal AS
    J Enzyme Inhib Med Chem; 2009 Feb; 24(1):205-23. PubMed ID: 18608745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
    Ahmadi S; Habibpour E
    Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR of Chalcones Utilizing Theoretical Molecular Descriptors.
    Nandi S; Bagchi MC
    Curr Comput Aided Drug Des; 2015; 11(2):184-93. PubMed ID: 26135340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Topological, Electronic, Geometrical, Constitutional and Quantum Chemical Based Descriptors in QSAR: mPGES-1 as a Case Study.
    Gupta A; Kumar V; Aparoy P
    Curr Top Med Chem; 2018; 18(13):1075-1090. PubMed ID: 30027847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Multivariate Adaptive Regression Splines (MARSplines) for Predicting Antitumor Activity of Anthrapyrazole Derivatives.
    Gackowski M; Szewczyk-Golec K; Pluskota R; Koba M; Mądra-Gackowska K; Woźniak A
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSRR and QSAR Studies of Antitumor Drugs in View of their Biological Activity Prediction.
    Szatkowska-Wandas P; Koba M; Smolinski G; Wandas J
    Med Chem; 2016; 12(6):592-600. PubMed ID: 26427930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of geometry optimization methods on QSAR modelling: A case study for predicting human serum albumin binding affinity.
    Önlü S; Türker Saçan M
    SAR QSAR Environ Res; 2017 Jun; 28(6):491-509. PubMed ID: 28705017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review.
    Adhikari C; Mishra BK
    Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CP-MLR directed QSAR studies on the antimycobacterial activity of functionalized alkenols--topological descriptors in modeling the activity.
    Gupta MK; Sagar R; Shaw AK; Prabhakar YS
    Bioorg Med Chem; 2005 Jan; 13(2):343-51. PubMed ID: 15598557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanistic QSAR study on the leishmanicidal activity of some 5-substituted-1,3,4-thiadiazole derivatives.
    Hemmateenejad B; Miri R; Niroomand U; Foroumadi A; Shafiee A
    Chem Biol Drug Des; 2007 Jun; 69(6):435-43. PubMed ID: 17581238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Physico-Chemical Properties of Quinolone Derivatives Using GA-MLR as a Computational Study.
    Shirmohammadi M; Mohammadinasab E; Bayat Z
    Curr Comput Aided Drug Des; 2020; 16(6):667-681. PubMed ID: 31830893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.
    Ivanciuc O
    Curr Comput Aided Drug Des; 2013 Jun; 9(2):153-63. PubMed ID: 23701000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of quantitative structure-activity relationships to the modeling of antitubercular compounds. 1. The hydrazide family.
    Ventura C; Martins F
    J Med Chem; 2008 Feb; 51(3):612-24. PubMed ID: 18176999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.