BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22003399)

  • 1. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.
    Brandl MT; Carter MQ; Parker CT; Chapman MR; Huynh S; Zhou Y
    PLoS One; 2011; 6(10):e25553. PubMed ID: 22003399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization.
    Balbontín R; Vlamakis H; Kolter R
    Microb Biotechnol; 2014 Nov; 7(6):589-600. PubMed ID: 25351041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose.
    Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW
    Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy.
    Ariafar MN; Iğci N; Akçelik M; Akçelik N
    Arch Microbiol; 2019 Nov; 201(9):1233-1248. PubMed ID: 31197408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pectin and Xyloglucan Influence the Attachment of Salmonella enterica and Listeria monocytogenes to Bacterial Cellulose-Derived Plant Cell Wall Models.
    Tan MS; Rahman S; Dykes GA
    Appl Environ Microbiol; 2016 Jan; 82(2):680-8. PubMed ID: 26567310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration host factor is important for biofilm formation by Salmonella enterica Enteritidis.
    Leite B; Werle CH; Carmo CPD; Nóbrega DB; Milanez GP; Culler HF; Sircili MP; Alvarez-Martinez CE; Brocchi M
    Pathog Dis; 2017 Aug; 75(6):. PubMed ID: 28859308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium.
    Castelijn GA; van der Veen S; Zwietering MH; Moezelaar R; Abee T
    Biofouling; 2012; 28(1):51-63. PubMed ID: 22235813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium.
    Ledeboer NA; Jones BD
    J Bacteriol; 2005 May; 187(9):3214-26. PubMed ID: 15838049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models.
    Tan MS; White AP; Rahman S; Dykes GA
    PLoS One; 2016; 11(6):e0158311. PubMed ID: 27355584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm formation, cellulose production, and curli biosynthesis by Salmonella originating from produce, animal, and clinical sources.
    Solomon EB; Niemira BA; Sapers GM; Annous BA
    J Food Prot; 2005 May; 68(5):906-12. PubMed ID: 15895720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation.
    García B; Latasa C; Solano C; García-del Portillo F; Gamazo C; Lasa I
    Mol Microbiol; 2004 Oct; 54(1):264-77. PubMed ID: 15458421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4.
    Gill MA; Rafique MW; Manan T; Slaeem S; Römling U; Matin A; Ahmad I
    Parasitol Res; 2018 Jul; 117(7):2283-2289. PubMed ID: 29797083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rab GDP-dissociation inhibitor gdiA is an essential gene required for cell wall chitin deposition in Aspergillus niger.
    van Leeuwe TM; Gerritsen A; Arentshorst M; Punt PJ; Ram AFJ
    Fungal Genet Biol; 2020 Mar; 136():103319. PubMed ID: 31884054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration.
    Moraes JO; Cruz EA; Souza EGF; Oliveira TCM; Alvarenga VO; Peña WEL; Sant'Ana AS; Magnani M
    Int J Food Microbiol; 2018 Sep; 281():90-100. PubMed ID: 29843904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. gcpA (stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by Salmonella enterica serovar Weltevreden in both high and low nutrient medium.
    Bhowmick PP; Devegowda D; Ruwandeepika HA; Fuchs TM; Srikumar S; Karunasagar I; Karunasagar I
    Microb Pathog; 2011 Feb; 50(2):114-22. PubMed ID: 21147214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.
    Lamas A; Miranda JM; Vázquez B; Cepeda A; Franco CM
    Int J Food Microbiol; 2016 Dec; 238():63-67. PubMed ID: 27592071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis.
    Jain S; Chen J
    J Food Prot; 2007 Nov; 70(11):2473-9. PubMed ID: 18044423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy.
    Jonas K; Tomenius H; Kader A; Normark S; Römling U; Belova LM; Melefors O
    BMC Microbiol; 2007 Jul; 7():70. PubMed ID: 17650335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.
    Schlisselberg DB; Kler E; Kisluk G; Shachar D; Yaron S
    Int J Antimicrob Agents; 2015 Oct; 46(4):456-9. PubMed ID: 26260191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the csgA and bcsA genes to Salmonella enterica serovar Pullorum biofilm formation and virulence.
    El Hag M; Feng Z; Su Y; Wang X; Yassin A; Chen S; Peng D; Liu X
    Avian Pathol; 2017 Oct; 46(5):541-547. PubMed ID: 28470089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.