These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22003461)

  • 1. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination.
    Jaafar M; Iglesias-Freire O; Serrano-Ramón L; Ibarra MR; de Teresa JM; Asenjo A
    Beilstein J Nanotechnol; 2011; 2():552-60. PubMed ID: 22003461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: application to superparamagnetic nanoparticles.
    Angeloni L; Passeri D; Reggente M; Mantovani D; Rossi M
    Sci Rep; 2016 May; 6():26293. PubMed ID: 27194591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate determination of MFM tip's magnetic parameters on nanoparticles by decoupling the influence of electrostatic force.
    Wu X; Zhang W; Wang W; Chen Y
    Nanotechnology; 2022 Aug; 33(47):. PubMed ID: 35970138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A; Palermo V; Samorì P
    Acc Chem Res; 2010 Apr; 43(4):541-50. PubMed ID: 20058907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals.
    Glatzel T; Zimmerli L; Koch S; Such B; Kawai S; Meyer E
    Nanotechnology; 2009 Jul; 20(26):264016. PubMed ID: 19509456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of electrostatic tip-sample interactions by time-domain Kelvin probe force microscopy.
    Ritz C; Wagner T; Stemmer A
    Beilstein J Nanotechnol; 2020; 11():911-921. PubMed ID: 32596095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode.
    Stan G; Namboodiri P
    Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection.
    Collins L; Okatan MB; Li Q; Kravenchenko II; Lavrik NV; Kalinin SV; Rodriguez BJ; Jesse S
    Nanotechnology; 2015 May; 26(17):175707. PubMed ID: 25851168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity.
    Balke N; Maksymovych P; Jesse S; Kravchenko II; Li Q; Kalinin SV
    ACS Nano; 2014 Oct; 8(10):10229-36. PubMed ID: 25257028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper bound for the magnetic force gradient in graphite.
    Martínez-Martín D; Jaafar M; Pérez R; Gómez-Herrero J; Asenjo A
    Phys Rev Lett; 2010 Dec; 105(25):257203. PubMed ID: 21231621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.
    Polak L; Wijngaarden RJ
    Ultramicroscopy; 2016 Dec; 171():158-165. PubMed ID: 27690346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitaxial hard magnetic SmCo
    Neu V; Vock S; Sturm T; Schultz L
    Nanoscale; 2018 Sep; 10(35):16881-16886. PubMed ID: 30175364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High spatial resolution Kelvin probe force microscopy with coaxial probes.
    Brown KA; Satzinger KJ; Westervelt RM
    Nanotechnology; 2012 Mar; 23(11):115703. PubMed ID: 22369870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution.
    Schneiderbauer M; Wastl D; Giessibl FJ
    Beilstein J Nanotechnol; 2012; 3():174-8. PubMed ID: 22428108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the use of magnetic force microscopy to discriminate between magnetic and nonmagnetic nanoparticles.
    Neves CS; Quaresma P; Baptista PV; Carvalho PA; Araújo JP; Pereira E; Eaton P
    Nanotechnology; 2010 Jul; 21(30):305706. PubMed ID: 20610872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y
    Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance.
    Arima E; Naitoh Y; Li YJ; Yoshimura S; Saito H; Nomura H; Nakatani R; Sugawara Y
    Nanotechnology; 2015 Mar; 26(12):125701. PubMed ID: 25736463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of surface topography on Kelvin probe force microscopy.
    Sadewasser S; Leendertz C; Streicher F; Lux-Steiner MCh
    Nanotechnology; 2009 Dec; 20(50):505503. PubMed ID: 19934483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method.
    Park YM; Park JS; Chung CH; Lee S
    Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip-to-sample distance dependence of an electrostatic force in KFM measurements.
    Takahashi T; Ono S
    Ultramicroscopy; 2004 Aug; 100(3-4):287-92. PubMed ID: 15231321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.