BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22003492)

  • 1. Total internal reflection Raman spectroscopy.
    Woods DA; Bain CD
    Analyst; 2012 Jan; 137(1):35-48. PubMed ID: 22003492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo.
    Greene PR; Bain CD
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):174-80. PubMed ID: 16198093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface.
    Yamamoto S; Watarai H
    Langmuir; 2006 Jul; 22(15):6562-9. PubMed ID: 16830998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total internal reflection spectroscopy for studying soft matter.
    Woods DA; Bain CD
    Soft Matter; 2014 Feb; 10(8):1071-96. PubMed ID: 24651911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband coherent anti-Stokes Raman spectroscopy characterization of polymer thin films.
    Schultz ZD; Gurau MC; Richter LJ
    Appl Spectrosc; 2006 Oct; 60(10):1097-102. PubMed ID: 17059660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air-water interface.
    Dai S; Zhang X; Du Z; Huang Y; Dang H
    Colloids Surf B Biointerfaces; 2005 Apr; 42(1):21-8. PubMed ID: 15784323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of total internal reflection Raman spectroscopy for the chemical characterization of thin films and interfaces.
    Nyamekye CKA; Bobbitt JM; Zhu Q; Smith EA
    Anal Bioanal Chem; 2020 Sep; 412(24):6009-6022. PubMed ID: 32173790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman microspectroscopic study on polymerization and degradation processes of a diacetylene derivative at surface enhanced Raman scattering active substrates. 2. Confocal Raman microscopic observation of polydiacetylene adsorbed on active sites.
    Itoh K; Kudryashov I; Yamagata J; Nishizawa T; Fujii M; Osaka N
    J Phys Chem B; 2005 Jan; 109(1):271-6. PubMed ID: 16851013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate adsorption at the buried hematite/solution interface investigated using total internal reflection (TIR)-Raman spectroscopy.
    Jubb AM; Verreault D; Posner R; Criscenti LJ; Katz LE; Allen HC
    J Colloid Interface Sci; 2013 Jun; 400():140-6. PubMed ID: 23562663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates.
    Biswas A; Bayer IS; Dahanayaka DH; Bumm LA; Li Z; Watanabe F; Sharma R; Xu Y; Biris AS; Norton MG; Suhir E
    Nanotechnology; 2009 Aug; 20(32):325705. PubMed ID: 19620750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.
    Tran W; Tisinger LG; Lavalle LE; Sommer AJ
    Appl Spectrosc; 2015; 69(2):230-8. PubMed ID: 25587997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tip-enhanced optical spectroscopy.
    Hartschuh A; Beversluis MR; Bouhelier A; Novotny L
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):807-19. PubMed ID: 15306495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry.
    De Jesús MA; Giesfeldt KS; Oran JM; Abu-Hatab NA; Lavrik NV; Sepaniak MJ
    Appl Spectrosc; 2005 Dec; 59(12):1501-8. PubMed ID: 16390590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols.
    Alvarez-Puebla RA; Dos Santos Júnior DS; Aroca RF
    Analyst; 2004 Dec; 129(12):1251-6. PubMed ID: 15565227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the structure of water at hydrophobic and hydrophilic interfaces by angle-resolved TIR Raman spectroscopy.
    Ota C
    Phys Chem Chem Phys; 2015 Oct; 17(39):26435-42. PubMed ID: 26391912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant adsorption kinetics by total internal reflection Raman spectroscopy. 1. Pure surfactants on silica.
    Woods DA; Petkov J; Bain CD
    J Phys Chem B; 2011 Jun; 115(22):7341-52. PubMed ID: 21591654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant adsorption kinetics by total internal reflection Raman spectroscopy. 2. CTAB and Triton X-100 mixtures on silica.
    Woods DA; Petkov J; Bain CD
    J Phys Chem B; 2011 Jun; 115(22):7353-63. PubMed ID: 21591653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent Raman spectroscopic study of the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl.
    Kang DS; Kwon KS; Kim SI; Gong MS; Seo SS; Noh TW; Joo SW
    Appl Spectrosc; 2005 Sep; 59(9):1136-40. PubMed ID: 16197636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron reflection from liquid interfaces.
    Thomas RK
    Annu Rev Phys Chem; 2004; 55():391-426. PubMed ID: 15117258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near IR scanning angle total internal reflection Raman spectroscopy at smooth gold films.
    McKee KJ; Meyer MW; Smith EA
    Anal Chem; 2012 May; 84(10):4300-6. PubMed ID: 22497599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.