These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22003707)

  • 1. Characterizing pathological deviations from normality using constrained manifold-learning.
    Duchateau N; De Craene M; Piella G; Frangi AF
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):256-63. PubMed ID: 22003707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained manifold learning for the characterization of pathological deviations from normality.
    Duchateau N; De Craene M; Piella G; Frangi AF
    Med Image Anal; 2012 Dec; 16(8):1532-49. PubMed ID: 22906821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities.
    Duchateau N; De Craene M; Piella G; Silva E; Doltra A; Sitges M; Bijnens BH; Frangi AF
    Med Image Anal; 2011 Jun; 15(3):316-28. PubMed ID: 21315650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical manifold learning.
    Bhatia KK; Rao A; Price AN; Wolz R; Hajnal J; Rueckert D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):512-9. PubMed ID: 23285590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Septal flash assessment on CRT candidates based on statistical atlases of motion.
    Duchateau N; De Craene M; Silva E; Sitges M; Bijnens BH; Frangi AF
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):759-66. PubMed ID: 20426180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking people on a torus.
    Elgammal A; Lee CS
    IEEE Trans Pattern Anal Mach Intell; 2009 Mar; 31(3):520-38. PubMed ID: 19147879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riemannian manifold learning.
    Lin T; Zha H
    IEEE Trans Pattern Anal Mach Intell; 2008 May; 30(5):796-809. PubMed ID: 18369250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection of end-diastole and end-systole from echocardiography images using manifold learning.
    Gifani P; Behnam H; Shalbaf A; Sani ZA
    Physiol Meas; 2010 Sep; 31(9):1091-103. PubMed ID: 20651421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Right ventricular septal pacing as alternative for failed left ventricular lead implantation in cardiac resynchronization therapy candidates.
    Alhous MH; Small GR; Hannah A; Hillis GS; Frenneaux M; Broadhurst PA
    Europace; 2015 Jan; 17(1):94-100. PubMed ID: 25359384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic evaluation of echocardiographic dyssynchrony indices: patient data combined with multiscale computer simulations.
    Lumens J; Leenders GE; Cramer MJ; De Boeck BW; Doevendans PA; Prinzen FW; Delhaas T
    Circ Cardiovasc Imaging; 2012 Jul; 5(4):491-9. PubMed ID: 22661491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac motion analysis to improve pacing site selection in CRT.
    Huang H; Shen L; Zhang R; Makedon F; Hettleman B; Pearlman J
    Acad Radiol; 2006 Sep; 13(9):1124-34. PubMed ID: 16935724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Automatic Tools to Identify Responders to Cardiac Resynchronization Therapy.
    Mada RO; Lysyansky P; Duchenne J; Beyer R; Mada C; Muresan L; Rosianu H; Serban A; Winter S; Fehske W; Stankovic I; Voigt JU
    J Am Soc Echocardiogr; 2016 Oct; 29(10):966-972. PubMed ID: 27498280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive manifold learning: estimating one-dimensional respiratory motion directly from undersampled k-space data.
    Usman M; Vaillant G; Atkinson D; Schaeffter T; Prieto C
    Magn Reson Med; 2014 Oct; 72(4):1130-40. PubMed ID: 24357143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy.
    Cikes M; Sanchez-Martinez S; Claggett B; Duchateau N; Piella G; Butakoff C; Pouleur AC; Knappe D; Biering-Sørensen T; Kutyifa V; Moss A; Stein K; Solomon SD; Bijnens B
    Eur J Heart Fail; 2019 Jan; 21(1):74-85. PubMed ID: 30328654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echocardiography without electrocardiogram using nonlinear dimensionality reduction methods.
    Shalbaf A; AlizadehSani Z; Behnam H
    J Med Ultrason (2001); 2015 Apr; 42(2):137-49. PubMed ID: 26576567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of dual-source computed tomography in cardiac resynchronization therapy-DIRECT study.
    Truong QA; Szymonifka J; Picard MH; Thai WE; Wai B; Cheung JW; Heist EK; Hoffmann U; Singh JP
    Heart Rhythm; 2018 Aug; 15(8):1206-1213. PubMed ID: 29572087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning nonlinear image manifolds by global alignment of local linear models.
    Verbeek J
    IEEE Trans Pattern Anal Mach Intell; 2006 Aug; 28(8):1236-50. PubMed ID: 16886860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images.
    Panayiotou M; King AP; Housden RJ; Ma Y; Cooklin M; O'Neill M; Gill J; Rinaldi CA; Rhode KS
    Med Phys; 2014 Jul; 41(7):071901. PubMed ID: 24989379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray and magnetic resonance imaging fusion for cardiac resynchronization therapy.
    Choi J; Radau P; Xu R; Wright GA
    Med Image Anal; 2016 Jul; 31():98-107. PubMed ID: 27025953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atlas-based quantification of myocardial motion abnormalities: added-value for understanding the effect of cardiac resynchronization therapy.
    Duchateau N; Doltra A; Silva E; De Craene M; Piella G; Castel MÁ; Mont L; Brugada J; Frangi AF; Sitges M
    Ultrasound Med Biol; 2012 Dec; 38(12):2186-97. PubMed ID: 23069133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.