These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22003718)

  • 1. Pose-invariant 3D proximal femur estimation through bi-planar image segmentation with hierarchical higher-order graph-based priors.
    Wang C; Boussaid H; Simon L; Lazennec JY; Paragios N
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):346-53. PubMed ID: 22003718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
    Chen C; Xie W; Franke J; Grutzner PA; Nolte LP; Zheng G
    Med Image Anal; 2014 Apr; 18(3):487-99. PubMed ID: 24561486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross modality deformable segmentation using hierarchical clustering and learning.
    Zhan Y; Dewan M; Zhou XS
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):1033-41. PubMed ID: 20426213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to reconstruct patient-specific proximal femur surface models from planar pre-operative radiographs.
    Galibarov PE; Prendergast PJ; Lennon AB
    Med Eng Phys; 2010 Dec; 32(10):1180-8. PubMed ID: 20933453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D knowledge-based segmentation using pose-invariant higher-order graphs.
    Wang C; Teboul O; Michel F; Essafi S; Paragios N
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):189-96. PubMed ID: 20879399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic radiograph based 3D bone reconstruction framework: application to osteotomy surgical planning.
    Gamage P; Xie SQ; Delmas P; Xu WL
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):481-8. PubMed ID: 20879435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint model-pixel segmentation with pose-invariant deformable graph-priors.
    Xiang B; Deux JF; Rahmouni A; Paragios N
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):267-74. PubMed ID: 24505770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of multiple knee bones from CT for orthopedic knee surgery planning.
    Wu D; Sofka M; Birkbeck N; Zhou SK
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):372-80. PubMed ID: 25333140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional variability of statistical shape models based on surrogate variables.
    Blanc R; Reyes M; Seiler C; Székely G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):84-91. PubMed ID: 20426099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning.
    Wang G; Zhang S; Xie H; Metaxas DN; Gu L
    Med Image Anal; 2015 Jan; 19(1):176-86. PubMed ID: 25461336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIFT algorithm-based 3D pose estimation of femur.
    Zhang X; Zhu Y; Li C; Zhao J; Li G
    Biomed Mater Eng; 2014; 24(6):2847-55. PubMed ID: 25226990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D/3D deformable registration using a hybrid atlas.
    Tang TS; Ellis RE
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):223-30. PubMed ID: 16685963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customization of a generic 3D model of the distal femur using diagnostic radiographs.
    Schmutz B; Reynolds KJ; Slavotinek JP
    J Med Eng Technol; 2008; 32(2):156-61. PubMed ID: 18297506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personalized X-ray reconstruction of the proximal femur via intensity-based non-rigid 2D-3D registration.
    Zheng G
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):598-606. PubMed ID: 21995078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
    Shao Y; Gao Y; Wang Q; Yang X; Shen D
    Med Image Anal; 2015 Dec; 26(1):345-56. PubMed ID: 26439938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-D graph cut segmentation with Riemannian metrics to avoid the shrinking problem.
    Hanaoka S; Fritscher K; Welk M; Nemoto M; Masutani Y; Hayashi N; Ohtomo K; Schubert R
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):554-61. PubMed ID: 22003743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Left ventricle segmentation in MRI via convex relaxed distribution matching.
    Nambakhsh CM; Yuan J; Punithakumar K; Goela A; Rajchl M; Peters TM; Ayed IB
    Med Image Anal; 2013 Dec; 17(8):1010-24. PubMed ID: 23851075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient kernel density estimation of shape and intensity priors for level set segmentation.
    Rousson M; Cremers D
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):757-64. PubMed ID: 16686028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.