These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 22003742)
1. A multichannel Markov random field approach for automated segmentation of breast cancer tumor in DCE-MRI data using kinetic observation model. Ashraf AB; Gavenonis S; Daye D; Mies C; Feldman M; Rosen M; Kontos D Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):546-53. PubMed ID: 22003742 [TBL] [Abstract][Full Text] [Related]
2. A multichannel Markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk. Ashraf AB; Gavenonis SC; Daye D; Mies C; Rosen MA; Kontos D IEEE Trans Med Imaging; 2013 Apr; 32(4):637-48. PubMed ID: 23008246 [TBL] [Abstract][Full Text] [Related]
3. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field. Chen M; Yan Q; Qin M Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503 [TBL] [Abstract][Full Text] [Related]
4. Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging. Agner SC; Xu J; Madabhushi A Med Phys; 2013 Mar; 40(3):032305. PubMed ID: 23464337 [TBL] [Abstract][Full Text] [Related]
5. Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI. Lee SH; Kim JH; Cho N; Park JS; Yang Z; Jung YS; Moon WK Med Phys; 2010 Aug; 37(8):3940-56. PubMed ID: 20879557 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis. Wang TC; Huang YH; Huang CS; Chen JH; Huang GY; Chang YC; Chang RF Magn Reson Imaging; 2014 Apr; 32(3):197-205. PubMed ID: 24439361 [TBL] [Abstract][Full Text] [Related]
7. Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Chen W; Giger ML; Bick U; Newstead GM Med Phys; 2006 Aug; 33(8):2878-87. PubMed ID: 16964864 [TBL] [Abstract][Full Text] [Related]
8. Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering. Chang YC; Huang YH; Huang CS; Chang PK; Chen JH; Chang RF Magn Reson Imaging; 2012 Apr; 30(3):312-22. PubMed ID: 22245697 [TBL] [Abstract][Full Text] [Related]
9. Suspicious Lesion Segmentation on Brain, Mammograms and Breast MR Images Using New Optimized Spatial Feature Based Super-Pixel Fuzzy C-Means Clustering. Kumar SN; Fred AL; Varghese PS J Digit Imaging; 2019 Apr; 32(2):322-335. PubMed ID: 30402671 [TBL] [Abstract][Full Text] [Related]
10. Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic resonance scans using fuzzy c-means clustering and level set segmentation. Shi J; Sahiner B; Chan HP; Paramagul C; Hadjiiski LM; Helvie M; Chenevert T Med Phys; 2009 Nov; 36(11):5052-63. PubMed ID: 19994516 [TBL] [Abstract][Full Text] [Related]
11. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI. Lin M; Chan S; Chen JH; Chang D; Nie K; Chen ST; Lin CJ; Shih TC; Nalcioglu O; Su MY Med Phys; 2011 Jan; 38(1):5-14. PubMed ID: 21361169 [TBL] [Abstract][Full Text] [Related]
12. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI. Kannan SR; Ramathilagam S; Devi P; Sathya A J Med Syst; 2012 Feb; 36(1):321-33. PubMed ID: 20703716 [TBL] [Abstract][Full Text] [Related]
13. A computer-aided diagnosis system for breast DCE-MRI at high spatiotemporal resolution. Dalmış MU; Gubern-Mérida A; Vreemann S; Karssemeijer N; Mann R; Platel B Med Phys; 2016 Jan; 43(1):84. PubMed ID: 26745902 [TBL] [Abstract][Full Text] [Related]
14. Estimating uncertainty in MRF-based image segmentation: A perfect-MCMC approach. Awate SP; Garg S; Jena R Med Image Anal; 2019 Jul; 55():181-196. PubMed ID: 31085445 [TBL] [Abstract][Full Text] [Related]
15. Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation. Xu J; Monaco JP; Madabhushi A Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):197-204. PubMed ID: 20879400 [TBL] [Abstract][Full Text] [Related]
16. Automated Brain Region Segmentation for Single Cell Resolution Histological Images Based on Markov Random Field. Xu X; Guan Y; Gong H; Feng Z; Shi W; Li A; Ren M; Yuan J; Luo Q Neuroinformatics; 2020 Apr; 18(2):181-197. PubMed ID: 31376002 [TBL] [Abstract][Full Text] [Related]
17. Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling. El-Melegy M; Kamel R; El-Ghar MA; Shehata M; Khalifa F; El-Baz A Sci Rep; 2022 Nov; 12(1):18816. PubMed ID: 36335227 [TBL] [Abstract][Full Text] [Related]
18. Computer-based automated estimation of breast vascularity and correlation with breast cancer in DCE-MRI images. Kostopoulos SA; Vassiou KG; Lavdas EN; Cavouras DA; Kalatzis IK; Asvestas PA; Arvanitis DL; Fezoulidis IV; Glotsos DT Magn Reson Imaging; 2017 Jan; 35():39-45. PubMed ID: 27569368 [TBL] [Abstract][Full Text] [Related]
19. Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms. Yousefi S; Azmi R; Zahedi M Med Image Anal; 2012 May; 16(4):840-8. PubMed ID: 22377656 [TBL] [Abstract][Full Text] [Related]
20. Combined use of T2-weighted MRI and T1-weighted dynamic contrast-enhanced MRI in the automated analysis of breast lesions. Bhooshan N; Giger M; Lan L; Li H; Marquez A; Shimauchi A; Newstead GM Magn Reson Med; 2011 Aug; 66(2):555-64. PubMed ID: 21523818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]