These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22003752)

  • 1. Reinforcement learning for context aware segmentation.
    Wang L; Merrifield R; Yang GZ
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):627-34. PubMed ID: 22003752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general framework for context-specific image segmentation using reinforcement learning.
    Wang L; Lekadir K; Lee SL; Merrifield R; Yang GZ
    IEEE Trans Med Imaging; 2013 May; 32(5):943-56. PubMed ID: 23508261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images.
    Mazonakis M; Grinias E; Pagonidis K; Tziritas G; Damilakis J
    Phys Med Biol; 2010 Feb; 55(4):1127-40. PubMed ID: 20107252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.
    Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD
    Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymorph segmentation representation for medical image computing.
    Pinter C; Lasso A; Fichtinger G
    Comput Methods Programs Biomed; 2019 Apr; 171():19-26. PubMed ID: 30902247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging.
    Bonekamp S; Ghosh P; Crawford S; Solga SF; Horska A; Brancati FL; Diehl AM; Smith S; Clark JM
    Int J Obes (Lond); 2008 Jan; 32(1):100-11. PubMed ID: 17700582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A joint shape evolution approach to medical image segmentation using expectation-maximization algorithm.
    Farzinfar M; Teoh EK; Xue Z
    Magn Reson Imaging; 2011 Nov; 29(9):1255-66. PubMed ID: 21873011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated learning-based interactive image segmentation using pairwise constraints.
    Sourati J; Erdogmus D; Dy JG; Brooks DH
    IEEE Trans Image Process; 2014 Jul; 23(7):3057-70. PubMed ID: 24860031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of medical images through competitive learning.
    Dhawan AP; Arata L
    Comput Methods Programs Biomed; 1993 Jul; 40(3):203-15. PubMed ID: 8243077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LEFMIS: locally-oriented evaluation framework for medical image segmentation algorithms.
    Skalski A; Jakubowski J; Drewniak T
    Phys Med Biol; 2018 Aug; 63(16):165016. PubMed ID: 29999495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive lesion segmentation with shape priors from offline and online learning.
    Shepherd T; Prince SJ; Alexander DC
    IEEE Trans Med Imaging; 2012 Sep; 31(9):1698-712. PubMed ID: 22547455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automated biomedical image segmentation by self-organized model adaptation.
    Wismüller A; Vietze F; Behrends J; Meyer-Baese A; Reiser M; Ritter H
    Neural Netw; 2004; 17(8-9):1327-44. PubMed ID: 15555869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Right ventricular segmentation in cardiac MRI with moving mesh correspondences.
    Punithakumar K; Noga M; Ben Ayed I; Boulanger P
    Comput Med Imaging Graph; 2015 Jul; 43():15-25. PubMed ID: 25733395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
    Zabihollahy F; White JA; Ukwatta E
    Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time 3D image segmentation by user-constrained template deformation.
    Mory B; Somphone O; Prevost R; Ardon R
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):561-8. PubMed ID: 23285596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval.
    Yang L; Jin R; Mummert L; Sukthankar R; Goode A; Zheng B; Hoi SC; Satyanarayanan M
    IEEE Trans Pattern Anal Mach Intell; 2010 Jan; 32(1):30-44. PubMed ID: 19926897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardium Segmentation From DE MRI Using Multicomponent Gaussian Mixture Model and Coupled Level Set.
    Liu J; Zhuang X; Wu L; An D; Xu J; Peters T; Gu L
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2650-2661. PubMed ID: 28129147
    [No Abstract]   [Full Text] [Related]  

  • 19. Active shape model with inter-profile modeling paradigm for cardiac right ventricle segmentation.
    ElBaz MS; Fahmy AS
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):691-8. PubMed ID: 23285612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning-based meta-algorithm for MRI brain extraction.
    Shi F; Wang L; Gilmore JH; Lin W; Shen D
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):313-21. PubMed ID: 22003714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.