These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22004069)

  • 1. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301.
    Martínez A; Osburne MS; Sharma AK; DeLong EF; Chisholm SW
    Environ Microbiol; 2012 Jun; 14(6):1363-77. PubMed ID: 22004069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential for phosphite and phosphonate utilization by Prochlorococcus.
    Feingersch R; Philosof A; Mejuch T; Glaser F; Alalouf O; Shoham Y; Béjà O
    ISME J; 2012 Apr; 6(4):827-34. PubMed ID: 22011717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphite utilization by the globally important marine diazotroph Trichodesmium.
    Polyviou D; Hitchcock A; Baylay AJ; Moore CM; Bibby TS
    Environ Microbiol Rep; 2015 Dec; 7(6):824-30. PubMed ID: 26081517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylphosphonate Oxidation in
    Sosa OA; Casey JR; Karl DM
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31028025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072.
    Wilson MM; Metcalf WW
    Appl Environ Microbiol; 2005 Jan; 71(1):290-6. PubMed ID: 15640200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 II: gene expression.
    Reistetter EN; Krumhardt K; Callnan K; Roache-Johnson K; Saunders JK; Moore LR; Rocap G
    Environ Microbiol; 2013 Jul; 15(7):2129-43. PubMed ID: 23647921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular basis of phosphite and hypophosphite recognition by ABC-transporters.
    Bisson C; Adams NBP; Stevenson B; Brindley AA; Polyviou D; Bibby TS; Baker PJ; Hunter CN; Hitchcock A
    Nat Commun; 2017 Nov; 8(1):1746. PubMed ID: 29170493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae.
    Kobayashi I; Imamura S; Hirota R; Kuroda A; Tanaka K
    J Gen Appl Microbiol; 2024 Mar; 69(5):287-291. PubMed ID: 37587047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Mechanisms of Thermal Acclimation in
    Alonso-Sáez L; Palacio AS; Cabello AM; Robaina-Estévez S; González JM; Garczarek L; López-Urrutia Á
    mBio; 2023 Jun; 14(3):e0342522. PubMed ID: 37052490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: uptake physiology.
    Krumhardt KM; Callnan K; Roache-Johnson K; Swett T; Robinson D; Reistetter EN; Saunders JK; Rocap G; Moore LR
    Environ Microbiol; 2013 Jul; 15(7):2114-28. PubMed ID: 23387819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Phosphite Oxidation and Its Potential Role in the Global Phosphorus and Carbon Cycles.
    Figueroa IA; Coates JD
    Adv Appl Microbiol; 2017; 98():93-117. PubMed ID: 28189156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.
    Morris JJ; Johnson ZI; Szul MJ; Keller M; Zinser ER
    PLoS One; 2011 Feb; 6(2):e16805. PubMed ID: 21304826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions.
    Martiny AC; Huang Y; Li W
    Environ Microbiol; 2009 Jun; 11(6):1340-7. PubMed ID: 19187282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation.
    Nahampun HN; López-Arredondo D; Xu X; Herrera-Estrella L; Wang K
    Plant Cell Rep; 2016 May; 35(5):1121-32. PubMed ID: 26883223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments.
    García-Fernández JM; de Marsac NT; Diez J
    Microbiol Mol Biol Rev; 2004 Dec; 68(4):630-8. PubMed ID: 15590777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Prochlorococcus clades from iron-depleted oceanic regions.
    Rusch DB; Martiny AC; Dupont CL; Halpern AL; Venter JC
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16184-9. PubMed ID: 20733077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88.
    Costas AM; White AK; Metcalf WW
    J Biol Chem; 2001 May; 276(20):17429-36. PubMed ID: 11278981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand.
    Adams NBP; Robertson AJ; Hunter CN; Hitchcock A; Bisson C
    Sci Rep; 2019 Jul; 9(1):10231. PubMed ID: 31308436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism.
    López-Arredondo DL; Herrera-Estrella L
    Plant Biotechnol J; 2013 May; 11(4):516-25. PubMed ID: 23530523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Most probable number quantification of hypophosphite and phosphite oxidizing bacteria in natural aquatic and terrestrial environments.
    Stone BL; White AK
    Arch Microbiol; 2012 Mar; 194(3):223-8. PubMed ID: 22134432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.