These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22004475)

  • 61. Encapsulation of Emulsion Droplets with Metal Shells for Subsequent Remote, Triggered Release.
    Stark K; Hitchcock JP; Fiaz A; White AL; Baxter EA; Biggs S; McLaughlan JR; Freear S; Cayre OJ
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12272-12282. PubMed ID: 30860810
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Matrix-assisted colloidosome reverse-phase layer-by-layer encapsulating biomolecules in hydrogel microcapsules with extremely high efficiency and retention stability.
    Mak WC; Bai J; Chang XY; Trau D
    Langmuir; 2009 Jan; 25(2):769-75. PubMed ID: 19105598
    [TBL] [Abstract][Full Text] [Related]  

  • 63. One-step multicomponent encapsulation by compound-fluidic electrospray.
    Chen H; Zhao Y; Song Y; Jiang L
    J Am Chem Soc; 2008 Jun; 130(25):7800-1. PubMed ID: 18510318
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells.
    Dowding PJ; Atkin R; Vincent B; Bouillot P
    Langmuir; 2004 Dec; 20(26):11374-9. PubMed ID: 15595759
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preparation and in vitro dissolution of salbutamol sulphate microcapsules and tabletted microcapsules.
    Yazan Y; Demirel M; Güler E
    J Microencapsul; 1995; 12(6):601-7. PubMed ID: 8558382
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Formation and mechanical characterization of aminoplast core/shell microcapsules.
    Pretzl M; Neubauer M; Tekaat M; Kunert C; Kuttner C; Leon G; Berthier D; Erni P; Ouali L; Fery A
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2940-8. PubMed ID: 22583902
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Towards Microcapsules with Improved Barrier Properties.
    Latnikova A; Jobmann M
    Top Curr Chem (Cham); 2017 Jun; 375(3):64. PubMed ID: 28567701
    [TBL] [Abstract][Full Text] [Related]  

  • 68. One-Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release.
    Zhang L; Cai LH; Lienemann PS; Rossow T; Polenz I; Vallmajo-Martin Q; Ehrbar M; Na H; Mooney DJ; Weitz DA
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13470-13474. PubMed ID: 27717141
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of formulation and processing factors on the characteristics of biodegradable microcapsules of zidovudine.
    Mandal TK; Shekleton M; Onyebueke E; Washington L; Penson T
    J Microencapsul; 1996; 13(5):545-57. PubMed ID: 8864992
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single-colloidal particle impedance spectroscopy: complete equivalent circuit analysis of polyelectrolyte microcapsules.
    Sun T; Bernabini C; Morgan H
    Langmuir; 2010 Mar; 26(6):3821-8. PubMed ID: 19845351
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparisons of simple and complex coacervations for preparation of sprayable insect sex pheromone microcapsules and release control of the encapsulated pheromone molecule.
    Gu XL; Zhu X; Kong XZ; Tan Y
    J Microencapsul; 2010; 27(4):355-64. PubMed ID: 20163286
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres).
    Fujiwara M; Shiokawa K; Hayashi K; Morigaki K; Nakahara Y
    J Biomed Mater Res A; 2007 Apr; 81(1):103-12. PubMed ID: 17109429
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biodegradable polymer microcapsules fabrication through a template-free approach.
    Yu X; Zhao Z; Nie W; Deng R; Liu S; Liang R; Zhu J; Ji X
    Langmuir; 2011 Aug; 27(16):10265-73. PubMed ID: 21766809
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Photolysis triggered sealing of multilayer capsules to entrap small molecules.
    Yi Q; Sukhorukov GB
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6723-31. PubMed ID: 23802998
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hollow pollen shells to enhance drug delivery.
    Diego-Taboada A; Beckett ST; Atkin SL; Mackenzie G
    Pharmaceutics; 2014 Mar; 6(1):80-96. PubMed ID: 24638098
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Permeability of silk microcapsules made by the interfacial adsorption of protein.
    Hermanson KD; Harasim MB; Scheibel T; Bausch AR
    Phys Chem Chem Phys; 2007 Dec; 9(48):6442-6. PubMed ID: 18060175
    [TBL] [Abstract][Full Text] [Related]  

  • 78. BSA-FITC-loaded microcapsules for in vivo delivery.
    Kim BS; Oh JM; Kim KS; Seo KS; Cho JS; Khang G; Lee HB; Park K; Kim MS
    Biomaterials; 2009 Feb; 30(5):902-9. PubMed ID: 19027943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Interfacial/free radical polymerization microencapsulation: kinetics of particle formation.
    Mahabadi HK; Ng TH; Tan HS
    J Microencapsul; 1996; 13(5):559-73. PubMed ID: 8864993
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Core/shell particles containing 3-(methacryloxypropyl)-trimethoxysilane in the shell: synthesis, characterization, and application.
    Cao S; Liu B; Deng X; Li S
    Macromol Biosci; 2005 Jul; 5(7):669-76. PubMed ID: 16010694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.