BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 22004591)

  • 1. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis.
    Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A
    Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.
    Keown DM; Favas G; Hayashi J; Li CZ
    Bioresour Technol; 2005 Sep; 96(14):1570-7. PubMed ID: 15978989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres.
    Munir S; Daood SS; Nimmo W; Cunliffe AM; Gibbs BM
    Bioresour Technol; 2009 Feb; 100(3):1413-8. PubMed ID: 18829303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions.
    Gai C; Dong Y; Zhang T
    Bioresour Technol; 2013 Jan; 127():298-305. PubMed ID: 23138056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of fire retardants on combustion and pyrolysis of sugar-cane bagasse.
    Griffin GJ
    Bioresour Technol; 2011 Sep; 102(17):8199-204. PubMed ID: 21680181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olive bagasse (Olea europea L.) pyrolysis.
    Sensöz S; Demiral I; Ferdi Gerçel H
    Bioresour Technol; 2006 Feb; 97(3):429-36. PubMed ID: 16216727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique.
    Edreis EM; Luo G; Li A; Chao C; Hu H; Zhang S; Gui B; Xiao L; Xu K; Zhang P; Yao H
    Bioresour Technol; 2013 May; 136():595-603. PubMed ID: 23567736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres.
    Li L; Zhao N; Fu X; Shao M; Qin S
    Bioresour Technol; 2013 Jul; 140():152-7. PubMed ID: 23693145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermogravimetric kinetics of sugarcane bagasse pretreated by hot-water.
    Wang Q; Liu S; Yang G; Chen J
    Bioresour Technol; 2013 Feb; 129():676-9. PubMed ID: 23312438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermogravimetric analysis of giant sensitive plants under air atmosphere.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Dec; 101(23):9314-20. PubMed ID: 20655742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies.
    Kumar M; Sabbarwal S; Mishra PK; Upadhyay SN
    Bioresour Technol; 2019 May; 279():262-270. PubMed ID: 30735936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of kinetic parameters of Phlomis bovei de Noé using thermogravimetric analysis.
    Yahiaoui M; Hadoun H; Toumert I; Hassani A
    Bioresour Technol; 2015 Nov; 196():441-7. PubMed ID: 26276095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion.
    Buratti C; Barbanera M; Bartocci P; Fantozzi F
    Bioresour Technol; 2015 Jun; 186():154-162. PubMed ID: 25817025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.