These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22004741)

  • 1. Magnetic manipulation of nanorods in the nucleus of living cells.
    Celedon A; Hale CM; Wirtz D
    Biophys J; 2011 Oct; 101(8):1880-6. PubMed ID: 22004741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses.
    Maremonti MI; Panzetta V; Dannhauser D; Netti PA; Causa F
    J R Soc Interface; 2022 Apr; 19(189):20210880. PubMed ID: 35440204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin Viscoelasticity Measured by Local Dynamic Analysis.
    Vivante A; Bronshtein I; Garini Y
    Biophys J; 2020 May; 118(9):2258-2267. PubMed ID: 32320676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin changes induced by lamin A/C deficiency and the histone deacetylase inhibitor trichostatin A.
    Galiová G; Bártová E; Raska I; Krejcí J; Kozubek S
    Eur J Cell Biol; 2008 May; 87(5):291-303. PubMed ID: 18396346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both lamin A and lamin C mutations cause lamina instability as well as loss of internal nuclear lamin organization.
    Broers JL; Kuijpers HJ; Ostlund C; Worman HJ; Endert J; Ramaekers FC
    Exp Cell Res; 2005 Apr; 304(2):582-92. PubMed ID: 15748902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei.
    Banigan EJ; Stephens AD; Marko JF
    Biophys J; 2017 Oct; 113(8):1654-1663. PubMed ID: 29045860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration.
    Lee JS; Hale CM; Panorchan P; Khatau SB; George JP; Tseng Y; Stewart CL; Hodzic D; Wirtz D
    Biophys J; 2007 Oct; 93(7):2542-52. PubMed ID: 17631533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of interphase nuclei probed by cellular strain application.
    Lammerding J; Lee RT
    Methods Mol Biol; 2009; 464():13-26. PubMed ID: 18951177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rupture Dynamics and Chromatin Herniation in Deformed Nuclei.
    Deviri D; Discher DE; Safran SA
    Biophys J; 2017 Sep; 113(5):1060-1071. PubMed ID: 28877489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of lamin A on the mechanical properties of amphibian oocyte nuclei measured by atomic force microscopy.
    Schäpe J; Prausse S; Radmacher M; Stick R
    Biophys J; 2009 May; 96(10):4319-25. PubMed ID: 19450502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local mechanical response of cells to the controlled rotation of magnetic nanorods.
    Castillo M; Ebensperger R; Wirtz D; Walczak M; Hurtado DE; Celedon A
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1779-85. PubMed ID: 24700696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Good news in the nuclear envelope: loss of lamin A might be a gain.
    Scaffidi P; Misteli T
    J Clin Invest; 2006 Mar; 116(3):632-4. PubMed ID: 16511598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.
    Stephens AD; Banigan EJ; Adam SA; Goldman RD; Marko JF
    Mol Biol Cell; 2017 Jul; 28(14):1984-1996. PubMed ID: 28057760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins.
    De Vos WH; Houben F; Hoebe RA; Hennekam R; van Engelen B; Manders EM; Ramaekers FC; Broers JL; Van Oostveldt P
    Biochim Biophys Acta; 2010 Apr; 1800(4):448-58. PubMed ID: 20079404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility.
    Erdel F; Baum M; Rippe K
    J Phys Condens Matter; 2015 Feb; 27(6):064115. PubMed ID: 25563347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction.
    Lammerding J; Schulze PC; Takahashi T; Kozlov S; Sullivan T; Kamm RD; Stewart CL; Lee RT
    J Clin Invest; 2004 Feb; 113(3):370-8. PubMed ID: 14755334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy.
    Berret JF
    Nat Commun; 2016 Jan; 7():10134. PubMed ID: 26729062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells.
    Houben F; Willems CH; Declercq IL; Hochstenbach K; Kamps MA; Snoeckx LH; Ramaekers FC; Broers JL
    Biochim Biophys Acta; 2009 Feb; 1793(2):312-24. PubMed ID: 19013199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells.
    Lammerding J; Lee RT
    Novartis Found Symp; 2005; 264():264-73; discussion 273-8. PubMed ID: 15773759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separate roles for chromatin and lamins in nuclear mechanics.
    Stephens AD; Banigan EJ; Marko JF
    Nucleus; 2018 Jan; 9(1):119-124. PubMed ID: 29227210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.