These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 2200516)

  • 21. Neuronal nitric oxide synthase: substrate and solvent kinetic isotope effects on the steady-state kinetic parameters for the reduction of 2,6-dichloroindophenol and cytochrome c(3+).
    Wolthers KR; Schimerlik MI
    Biochemistry; 2002 Jan; 41(1):196-204. PubMed ID: 11772017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox interconversion of Escherichia coli glutathione reductase. A study with permeabilized and intact cells.
    Mata AM; Pinto MC; López-Barea J
    Mol Cell Biochem; 1985 Oct; 68(2):121-30. PubMed ID: 3908906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic isotope effects in the oxidation of isotopically labeled NAD(P)H by bacterial flavoprotein monooxygenases.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 Mar; 21(6):1144-51. PubMed ID: 7074071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic isotope effects on the oxidation of reduced nicotinamide adenine dinucleotide phosphate by the flavoprotein methylenetetrahydrofolate reductase.
    Vanoni MA; Matthews RG
    Biochemistry; 1984 Oct; 23(22):5272-9. PubMed ID: 6391540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M; Nidetzky B
    Biochemistry; 2002 Aug; 41(31):10158-65. PubMed ID: 12146981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of the kinetic mechanism followed by glutathione reductase from mycelium of Phycomyces blakesleeanus.
    Montero S; de Arriaga D; Busto F; Soler J
    Arch Biochem Biophys; 1990 Apr; 278(1):52-9. PubMed ID: 2321969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis.
    Veine DM; Arscott LD; Williams CH
    Biochemistry; 1998 Nov; 37(44):15575-82. PubMed ID: 9799522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic studies of the reduction of yeast glutathione reductase by reduced nicotinamide hypoxanthine dinucleotide phosphate.
    Huber PW; Brandt KG
    Arch Biochem Biophys; 1985 Apr; 238(1):213-8. PubMed ID: 3885856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Apr; 39(13):3708-17. PubMed ID: 10736170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration.
    Woodyer R; Zhao H; van der Donk WA
    FEBS J; 2005 Aug; 272(15):3816-27. PubMed ID: 16045753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of allosteric activation on the primary and secondary kinetic isotope effects for three AMP nucleosidases.
    Parkin DW; Schramm VL
    J Biol Chem; 1984 Aug; 259(15):9418-25. PubMed ID: 6378909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox interconversion of glutathione reductase from Escherichia coli. A study with pure enzyme and cell-free extracts.
    Mata AM; Pinto MC; López-Barea J
    Mol Cell Biochem; 1985 May; 67(1):65-76. PubMed ID: 3894932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves. Comparison of immunological properties of leaf hydroxypyruvate reductases.
    Kleczkowski LA; Randall DD
    Biochem J; 1988 Feb; 250(1):145-52. PubMed ID: 3281657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 'branched' mechanism of the reverse reaction of yeast glutathione reductase. An estimation of the enzyme standard potential values from the steady-state kinetics data.
    Rakauskiene GA; Cenas NK; Kulys JJ
    FEBS Lett; 1989 Jan; 243(1):33-6. PubMed ID: 2646147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inactivation-reactivation of two-electron reduced Escherichia coli glutathione reductase involving a dimer-monomer equilibrium.
    Arscott LD; Drake DM; Williams CH
    Biochemistry; 1989 Apr; 28(8):3591-8. PubMed ID: 2663073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Dec; 39(51):16244-51. PubMed ID: 11123955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifunctional activities of yeast glutathione reductase.
    Tsai CS; Godin JR
    Int J Biochem; 1987; 19(4):337-43. PubMed ID: 3297844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of enzymatic and acid-catalyzed decarboxylations of prephenate.
    Hermes JD; Tipton PA; Fisher MA; O'Leary MH; Morrison JF; Cleland WW
    Biochemistry; 1984 Dec; 23(25):6263-75. PubMed ID: 6395898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects.
    Wang LH; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10682-8. PubMed ID: 6381488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.