These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22005331)

  • 1. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite.
    Tampieri A; D'Alessandro T; Sandri M; Sprio S; Landi E; Bertinetti L; Panseri S; Pepponi G; Goettlicher J; Bañobre-López M; Rivas J
    Acta Biomater; 2012 Feb; 8(2):843-51. PubMed ID: 22005331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure.
    Wu C; Fan W; Zhu Y; Gelinsky M; Chang J; Cuniberti G; Albrecht V; Friis T; Xiao Y
    Acta Biomater; 2011 Oct; 7(10):3563-72. PubMed ID: 21745610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications.
    Farzin A; Fathi M; Emadi R
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):21-31. PubMed ID: 27770883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release.
    Chandra VS; Baskar G; Suganthi RV; Elayaraja K; Joshy MI; Beaula WS; Mythili R; Venkatraman G; Kalkura SN
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1200-10. PubMed ID: 22316071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles.
    Tran N; Webster TJ
    Acta Biomater; 2011 Mar; 7(3):1298-306. PubMed ID: 20937416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural, mechanical, and osteocompatibility properties of Mg2+/F(-)-doped nanophase hydroxyapatite.
    Sun ZP; Ercan B; Evis Z; Webster TJ
    J Biomed Mater Res A; 2010 Sep; 94(3):806-15. PubMed ID: 20336758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ synthesis of hydroxyapatite nanocomposites using iron oxide nanofluids at ambient conditions.
    Sheikh L; Mahto N; Nayar S
    J Mater Sci Mater Med; 2015 Jan; 26(1):5393. PubMed ID: 25589209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method.
    Padilla S; Sánchez-Salcedo S; Vallet-Regí M
    J Biomed Mater Res A; 2005 Oct; 75(1):63-72. PubMed ID: 16088904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds.
    Sachlos E; Wahl DA; Triffitt JT; Czernuszka JT
    Acta Biomater; 2008 Sep; 4(5):1322-31. PubMed ID: 18440886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium.
    Sato M; Sambito MA; Aslani A; Kalkhoran NM; Slamovich EB; Webster TJ
    Biomaterials; 2006 Apr; 27(11):2358-69. PubMed ID: 16337679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix.
    Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X
    J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds.
    San Miguel B; Kriauciunas R; Tosatti S; Ehrbar M; Ghayor C; Textor M; Weber FE
    J Biomed Mater Res A; 2010 Sep; 94(4):1023-33. PubMed ID: 20694969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy.
    Farzin A; Hassan S; Emadi R; Etesami SA; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():930-938. PubMed ID: 30813100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite.
    Li H; Khor KA; Chow V; Cheang P
    J Biomed Mater Res A; 2007 Aug; 82(2):296-303. PubMed ID: 17274029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour.
    Panseri S; Cunha C; D'Alessandro T; Sandri M; Giavaresi G; Marcacci M; Hung CT; Tampieri A
    J Nanobiotechnology; 2012 Jul; 10():32. PubMed ID: 22828388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.