These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 22005741)
1. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Hanly TJ; Urello M; Henson MA Appl Microbiol Biotechnol; 2012 Mar; 93(6):2529-41. PubMed ID: 22005741 [TBL] [Abstract][Full Text] [Related]
2. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Hanly TJ; Henson MA Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517 [TBL] [Abstract][Full Text] [Related]
3. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Hector RE; Qureshi N; Hughes SR; Cotta MA Appl Microbiol Biotechnol; 2008 Sep; 80(4):675-84. PubMed ID: 18629494 [TBL] [Abstract][Full Text] [Related]
4. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
5. Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production. Lisha KP; Sarkar D Bioprocess Biosyst Eng; 2014 Apr; 37(4):617-27. PubMed ID: 23921448 [TBL] [Abstract][Full Text] [Related]
6. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. Chen Y; Wu Y; Zhu B; Zhang G; Wei N PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003 [TBL] [Abstract][Full Text] [Related]
7. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Eiteman MA; Lee SA; Altman R; Altman E Biotechnol Bioeng; 2009 Feb; 102(3):822-7. PubMed ID: 18828178 [TBL] [Abstract][Full Text] [Related]
8. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. Bellissimi E; van Dijken JP; Pronk JT; van Maris AJ FEMS Yeast Res; 2009 May; 9(3):358-64. PubMed ID: 19416101 [TBL] [Abstract][Full Text] [Related]
9. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Zhang J; Lynd LR Biotechnol Bioeng; 2010 Oct; 107(2):235-44. PubMed ID: 20506488 [TBL] [Abstract][Full Text] [Related]
10. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
11. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. Hjersted JL; Henson MA IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977 [TBL] [Abstract][Full Text] [Related]
12. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Hjersted JL; Henson MA; Mahadevan R Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146 [TBL] [Abstract][Full Text] [Related]
14. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. Kuyper M; Toirkens MJ; Diderich JA; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2005 Jul; 5(10):925-34. PubMed ID: 15949975 [TBL] [Abstract][Full Text] [Related]
16. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Fonseca C; Olofsson K; Ferreira C; Runquist D; Fonseca LL; Hahn-Hägerdal B; Lidén G Enzyme Microb Technol; 2011 May; 48(6-7):518-25. PubMed ID: 22113025 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Govindaswamy S; Vane LM Bioresour Technol; 2007 Feb; 98(3):677-85. PubMed ID: 16563746 [TBL] [Abstract][Full Text] [Related]
18. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Alff-Tuomala S; Salusjärvi L; Barth D; Oja M; Penttilä M; Pitkänen JP; Ruohonen L; Jouhten P Appl Microbiol Biotechnol; 2016 Jan; 100(2):969-85. PubMed ID: 26454869 [TBL] [Abstract][Full Text] [Related]
19. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related]
20. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Shen MH; Song H; Li BZ; Yuan YJ Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]