These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22006203)

  • 21. Effects of sucrose and mannitol on asparagine deamidation rates of model peptides in solution and in the solid state.
    Li B; O'Meara MH; Lubach JW; Schowen RL; Topp EM; Munson EJ; Borchardt RT
    J Pharm Sci; 2005 Aug; 94(8):1723-35. PubMed ID: 15986465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical stability of peptides in polymers. 2. Discriminating between solvent and plasticizing effects of water on peptide deamidation in poly(vinylpyrrolidone).
    Lai MC; Hageman MJ; Schowen RL; Borchardt RT; Laird BB; Topp EM
    J Pharm Sci; 1999 Oct; 88(10):1081-9. PubMed ID: 10514359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactivity toward deamidation of asparagine residues in beta-turn structures.
    Xie M; Aubé J; Borchardt RT; Morton M; Topp EM; Vander Velde D; Schowen RL
    J Pept Res; 2000 Sep; 56(3):165-71. PubMed ID: 11007273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues.
    Lura R; Schirch V
    Biochemistry; 1988 Oct; 27(20):7671-7. PubMed ID: 3207697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid-state stability of human insulin. II. Effect of water on reactive intermediate partitioning in lyophiles from pH 2-5 solutions: stabilization against covalent dimer formation.
    Strickley RG; Anderson BD
    J Pharm Sci; 1997 Jun; 86(6):645-53. PubMed ID: 9188045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of deamidation on stability for the collagen to gelatin transition.
    Silva T; Kirkpatrick A; Brodsky B; Ramshaw JA
    J Agric Food Chem; 2005 Oct; 53(20):7802-6. PubMed ID: 16190633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analysis of deamidation and isomerization in β2-microglobulin by 18O labeling.
    Fukuda M; Takao T
    Anal Chem; 2012 Dec; 84(23):10388-94. PubMed ID: 23126476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain.
    Yan B; Steen S; Hambly D; Valliere-Douglass J; Vanden Bos T; Smallwood S; Yates Z; Arroll T; Han Y; Gadgil H; Latypov RF; Wallace A; Lim A; Kleemann GR; Wang W; Balland A
    J Pharm Sci; 2009 Oct; 98(10):3509-21. PubMed ID: 19475547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of protein cleavage at asparagine leading to protein-protein cross-links.
    Friedrich MG; Wang Z; Schey KL; Truscott RJW
    Biochem J; 2019 Dec; 476(24):3817-3834. PubMed ID: 31794011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization.
    Wakankar AA; Borchardt RT
    J Pharm Sci; 2006 Nov; 95(11):2321-36. PubMed ID: 16960822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics and mechanism of the cleavage of the peptide bond next to asparagine.
    Capasso S; Mazzarella L; Sorrentino G; Balboni G; Kirby AJ
    Peptides; 1996; 17(6):1075-7. PubMed ID: 8899829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of lysine residues on the deamidation reaction of asparagine side chains.
    Capasso S; Balboni G; Di Cerbo P
    Biopolymers; 2000 Feb; 53(2):213-9. PubMed ID: 10679625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
    Stephenson RC; Clarke S
    J Biol Chem; 1989 Apr; 264(11):6164-70. PubMed ID: 2703484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: Consequences for MALDI and HPLC-MALDI analysis.
    Krokhin OV; Antonovici M; Ens W; Wilkins JA; Standing KG
    Anal Chem; 2006 Sep; 78(18):6645-50. PubMed ID: 16970346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deuteration protects asparagine residues against racemization.
    Lowenson JD; Shmanai VV; Shklyaruck D; Clarke SG; Shchepinov MS
    Amino Acids; 2016 Sep; 48(9):2189-96. PubMed ID: 27169868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solid state chemical instability of an asparaginyl residue in a model hexapeptide.
    Oliyai C; Patel JP; Carr L; Borchardt RT
    J Pharm Sci Technol; 1994; 48(3):167-23. PubMed ID: 8069519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of a two-state kinetic model to the heterogeneous kinetics of reaction between cysteine and hydrogen peroxide in amorphous lyophiles.
    Luo D; Anderson BD
    J Pharm Sci; 2008 Sep; 97(9):3907-26. PubMed ID: 18200535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclization of the N-terminal X-Asn-Gly motif during sample preparation for bottom-up proteomics.
    Zhang X; Højrup P
    Anal Chem; 2010 Oct; 82(20):8680-5. PubMed ID: 20866026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides.
    Patel K; Borchardt RT
    Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.