BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 22006344)

  • 41. Protein Engineering for Improving and Diversifying Natural Product Biosynthesis.
    Li C; Zhang R; Wang J; Wilson LM; Yan Y
    Trends Biotechnol; 2020 Jul; 38(7):729-744. PubMed ID: 31954530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines.
    Brown AS; Calcott MJ; Owen JG; Ackerley DF
    Nat Prod Rep; 2018 Nov; 35(11):1210-1228. PubMed ID: 30069573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frontiers and opportunities in chemoenzymatic synthesis.
    Mortison JD; Sherman DH
    J Org Chem; 2010 Nov; 75(21):7041-51. PubMed ID: 20882949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Application of molecular biology for the discovery of biosynthetic genes of polyketide and peptide antibiotics produced by actinomycetes].
    Kotowska M
    Postepy Biochem; 2005; 51(3):345-52. PubMed ID: 16381179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic engineering for the production of natural products.
    Pickens LB; Tang Y; Chooi YH
    Annu Rev Chem Biomol Eng; 2011; 2():211-36. PubMed ID: 22432617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Halogenase Engineering for the Generation of New Natural Product Analogues.
    Brown S; O'Connor SE
    Chembiochem; 2015 Oct; 16(15):2129-35. PubMed ID: 26256103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase.
    Sundermann U; Bravo-Rodriguez K; Klopries S; Kushnir S; Gomez H; Sanchez-Garcia E; Schulz F
    ACS Chem Biol; 2013 Feb; 8(2):443-50. PubMed ID: 23181268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocatalysts for natural product biosynthesis.
    Tibrewal N; Tang Y
    Annu Rev Chem Biomol Eng; 2014; 5():347-66. PubMed ID: 24910918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights into multienzyme docking in hybrid PKS-NRPS megasynthetases revealed by heterologous expression and genetic engineering.
    Li Y; Weissman KJ; Müller R
    Chembiochem; 2010 May; 11(8):1069-75. PubMed ID: 20391455
    [No Abstract]   [Full Text] [Related]  

  • 50. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines.
    Miyanaga A; Kudo F; Eguchi T
    Nat Prod Rep; 2018 Nov; 35(11):1185-1209. PubMed ID: 30074030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular diversity sculpted by fungal PKS-NRPS hybrids.
    Boettger D; Hertweck C
    Chembiochem; 2013 Jan; 14(1):28-42. PubMed ID: 23225733
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes.
    Sunbul M; Zhang K; Yin J
    Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics.
    Ouadhi S; López DMV; Mohideen FI; Kwan DH
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 36444941
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of enzyme engineering upon natural product glycodiversification.
    Williams GJ; Gantt RW; Thorson JS
    Curr Opin Chem Biol; 2008 Oct; 12(5):556-64. PubMed ID: 18678278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards Precision Engineering of Canonical Polyketide Synthase Domains: Recent Advances and Future Prospects.
    Bayly CL; Yadav VG
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28165430
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: optimized biogenesis challenging chemical synthesis.
    Alvarez R; de Lera AR
    Nat Prod Rep; 2021 Jun; 38(6):1136-1220. PubMed ID: 33283831
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.
    Giordano D; Coppola D; Russo R; Denaro R; Giuliano L; Lauro FM; di Prisco G; Verde C
    Adv Microb Physiol; 2015; 66():357-428. PubMed ID: 26210108
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Priming type II polyketide synthases via a type II nonribosomal peptide synthetase mechanism.
    Izumikawa M; Cheng Q; Moore BS
    J Am Chem Soc; 2006 Feb; 128(5):1428-9. PubMed ID: 16448095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carrier protein structure and recognition in polyketide and nonribosomal peptide biosynthesis.
    Lai JR; Koglin A; Walsh CT
    Biochemistry; 2006 Dec; 45(50):14869-79. PubMed ID: 17154525
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tailoring enzymes acting on carrier protein-tethered substrates in natural product biosynthesis.
    Lin S; Huang T; Shen B
    Methods Enzymol; 2012; 516():321-43. PubMed ID: 23034236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.