BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22006554)

  • 1. MR venography of the brain with enhanced vessel contrast using image-domain high-pass filtering of the susceptibility phase shift.
    Jin Z; Xia L; Lou M; Zhang M; Du YP
    J Magn Reson Imaging; 2011 Nov; 34(5):1218-25. PubMed ID: 22006554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Background-suppressed MR venography of the brain using magnitude data: a high-pass filtering approach.
    Jin Z; Xia L; Zhang M; Du YP
    Comput Math Methods Med; 2014; 2014():812785. PubMed ID: 25013453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-echo acquisition of MR angiography and venography of the brain at 3 Tesla.
    Du YP; Jin Z; Hu Y; Tanabe J
    J Magn Reson Imaging; 2009 Aug; 30(2):449-54. PubMed ID: 19629975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new automatic phase mask filter for high-resolution brain venography at 3 T: theoretical background and experimental validation.
    Casciaro S; Bianco R; Franchini R; Casciaro E; Conversano F
    Magn Reson Imaging; 2010 May; 28(4):511-9. PubMed ID: 20117897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional cerebral contrast-enhanced magnetic resonance venography at 3.0 Tesla: initial results using highly accelerated parallel acquisition.
    Nael K; Fenchel M; Salamon N; Duckwiler GR; Laub G; Finn JP; Villablanca JP
    Invest Radiol; 2006 Oct; 41(10):763-8. PubMed ID: 16971800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated unwrapping of MR phase images applied to BOLD MR-venography at 3 Tesla.
    Rauscher A; Barth M; Reichenbach JR; Stollberger R; Moser E
    J Magn Reson Imaging; 2003 Aug; 18(2):175-80. PubMed ID: 12884329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of using multiple-echo image combination and asymmetric triangular phase masking in magnetic resonance venography at 3 T.
    Brainovich V; Sabatini U; Hagberg GE
    Magn Reson Imaging; 2009 Jan; 27(1):23-37. PubMed ID: 18599241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast-enhanced intracranial magnetic resonance angiography with a spherical shells trajectory and online gridding reconstruction.
    Shu Y; Bernstein MA; Huston J; Rettmann D
    J Magn Reson Imaging; 2009 Nov; 30(5):1101-9. PubMed ID: 19856444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ToF-SWI: simultaneous time of flight and fully flow compensated susceptibility weighted imaging.
    Deistung A; Dittrich E; Sedlacik J; Rauscher A; Reichenbach JR
    J Magn Reson Imaging; 2009 Jun; 29(6):1478-84. PubMed ID: 19472425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of artifacts in susceptibility-weighted MR venography of the brain.
    Jin Z; Xia L; Du YP
    J Magn Reson Imaging; 2008 Aug; 28(2):327-33. PubMed ID: 18666154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved elimination of phase effects from background field inhomogeneities for susceptibility weighted imaging at high magnetic field strengths.
    Rauscher A; Barth M; Herrmann KH; Witoszynskyj S; Deistung A; Reichenbach JR
    Magn Reson Imaging; 2008 Oct; 26(8):1145-51. PubMed ID: 18524525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Display of dural sinuses with time-resolved, contrast-enhanced three-dimensional MR venography.
    Meckel S; Glücker TM; Kretzschmar M; Scheffler K; Radü EW; Wetzel SG
    Cerebrovasc Dis; 2008; 25(3):217-24. PubMed ID: 18216463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional fast spoiled gradient-echo dual echo (3D-FSPGR-DE) with water reconstruction: preliminary experience with a novel pulse sequence for gadolinium-enhanced abdominal MR imaging.
    Low RN; Panchal N; Vu AT; Knowles A; Estkowski L; Slavens Z; Ma J
    J Magn Reson Imaging; 2008 Oct; 28(4):946-56. PubMed ID: 18821620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional susceptibility-weighted imaging at 3 T using various image analysis methods in the estimation of grading intracranial gliomas.
    Hori M; Mori H; Aoki S; Abe O; Masumoto T; Kunimatsu S; Ohtomo K; Kabasawa H; Shiraga N; Araki T
    Magn Reson Imaging; 2010 May; 28(4):594-8. PubMed ID: 20233645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artifact reduction of susceptibility-weighted imaging using a short-echo phase mask.
    Ishimori Y; Monma M; Kohno Y
    Acta Radiol; 2009 Nov; 50(9):1027-34. PubMed ID: 19863413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Diagnosis of renal artery stenosis with magnetic resonance angiography and stenosis quantification].
    Marchand B; Hernandez-Hoyos M; Orkisz M; Douek P
    J Mal Vasc; 2000 Dec; 25(5):312-320. PubMed ID: 11148391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising.
    Jang U; Nam Y; Kim DH; Hwang D
    Neuroimage; 2013 Apr; 70():308-16. PubMed ID: 23296184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new susceptibility-weighted image reconstruction method for the reduction of background phase artifacts.
    Lee Y; Han Y; Park H
    Magn Reson Med; 2014 Mar; 71(3):1324-35. PubMed ID: 23674230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR angiography with three-dimensional MR digital subtraction angiography.
    Frayne R; Grist TM; Korosec FR; Willig DS; Swan JS; Turski PA; Mistretta CA
    Top Magn Reson Imaging; 1996 Dec; 8(6):366-88. PubMed ID: 9402678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast-enhanced, high-resolution, susceptibility-weighted magnetic resonance imaging of the brain: dose-dependent optimization at 3 tesla and 1.5 tesla in healthy volunteers.
    Noebauer-Huhmann IM; Pinker K; Barth M; Mlynarik V; Ba-Ssalamah A; Saringer WF; Weber M; Benesch T; Witoszynskyj S; Rauscher A; Reichenbach JR; Trattnig S
    Invest Radiol; 2006 Mar; 41(3):249-55. PubMed ID: 16481907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.