These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 2200663)

  • 1. Airflow, gas deposition, and lesion distribution in the nasal passages.
    Morgan KT; Monticello TM
    Environ Health Perspect; 1990 Apr; 85():209-18. PubMed ID: 2200663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
    Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat.
    Kimbell JS; Gross EA; Joyner DR; Godo MN; Morgan KT
    Toxicol Appl Pharmacol; 1993 Aug; 121(2):253-63. PubMed ID: 8346542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of inspiratory airflow patterns in the nasal passages of the F344 rat and rhesus monkey using nasal molds: relevance to formaldehyde toxicity.
    Morgan KT; Kimbell JS; Monticello TM; Patra AL; Fleishman A
    Toxicol Appl Pharmacol; 1991 Sep; 110(2):223-40. PubMed ID: 1891770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages.
    Kimbell JS; Subramaniam RP
    Inhal Toxicol; 2001 May; 13(5):325-34. PubMed ID: 11295865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey.
    Kepler GM; Richardson RB; Morgan KT; Kimbell JS
    Toxicol Appl Pharmacol; 1998 May; 150(1):1-11. PubMed ID: 9630447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium.
    Harkema JR; Carey SA; Wagner JG
    Toxicol Pathol; 2006; 34(3):252-69. PubMed ID: 16698724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasal dosimetry of inhaled gases and particles: where do inhaled agents go in the nose?
    Kimbell JS
    Toxicol Pathol; 2006; 34(3):270-3. PubMed ID: 16698725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability.
    Garcia GJ; Schroeter JD; Segal RA; Stanek J; Foureman GL; Kimbell JS
    Inhal Toxicol; 2009 Jun; 21(7):607-18. PubMed ID: 19459775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airflow characteristics in a baboon nasal passage cast.
    Patra AL; Gooya A; Morgan KT
    J Appl Physiol (1985); 1986 Nov; 61(5):1959-66. PubMed ID: 3782001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational fluid dynamics approach to assess interhuman variability in hydrogen sulfide nasal dosimetry.
    Schroeter JD; Garcia GJ; Kimbell JS
    Inhal Toxicol; 2010 Mar; 22(4):277-86. PubMed ID: 20064104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.
    Chamanza R; Wright JA
    J Comp Pathol; 2015 Nov; 153(4):287-314. PubMed ID: 26460093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment.
    Kimbell JS; Overton JH; Subramaniam RP; Schlosser PM; Morgan KT; Conolly RB; Miller FJ
    Toxicol Sci; 2001 Nov; 64(1):111-21. PubMed ID: 11606807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic and neoplastic responses in the nasal passages: future research needs.
    Bonnefoi M; Monticello TM; Morgan KT
    Exp Lung Res; 1991; 17(5):853-68. PubMed ID: 1959500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants.
    Harkema JR
    Environ Health Perspect; 1990 Apr; 85():231-8. PubMed ID: 2116960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of endogenous formaldehyde in nasal tissues on inhaled formaldehyde dosimetry predictions in the rat, monkey, and human nasal passages.
    Schroeter JD; Campbell J; Kimbell JS; Conolly RB; Clewell HJ; Andersen ME
    Toxicol Sci; 2014 Apr; 138(2):412-24. PubMed ID: 24385418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological variation and airflow dynamics in the human nose.
    Churchill SE; Shackelford LL; Georgi JN; Black MT
    Am J Hum Biol; 2004; 16(6):625-38. PubMed ID: 15495233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest.
    Segal RA; Kepler GM; Kimbell JS
    Ann Biomed Eng; 2008 Nov; 36(11):1870-82. PubMed ID: 18777212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nasal epithelium as a sentinel for airborne environmental pollution.
    Calderón-Garcidueñas L; Rodríguez-Alcaraz A; Villarreal-Calderón A; Lyght O; Janszen D; Morgan KT
    Toxicol Sci; 1998 Dec; 46(2):352-64. PubMed ID: 10048139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.