These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2200668)

  • 1. Pulmonary metabolism of foreign compounds: its role in metabolic activation.
    Cohen GM
    Environ Health Perspect; 1990 Apr; 85():31-41. PubMed ID: 2200668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of metabolic activation in the pathogenesis of chemically induced pulmonary disease: mechanism of action of the lung-toxic furan, 4-ipomeanol.
    Boyd MR
    Environ Health Perspect; 1976 Aug; 16():127-38. PubMed ID: 1017416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of drugs, other foreign compounds, and cigarette smoke on the synthesis of protein by lung slices.
    Hellstern K; Curtis CG; Upshall DG; Powell GM
    Environ Health Perspect; 1990 Apr; 85():145-50. PubMed ID: 2384059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic activation and lung toxicity: a basis for cell-selective pulmonary damage by foreign chemicals.
    Boyd MR
    Environ Health Perspect; 1984 Apr; 55():47-51. PubMed ID: 6376110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung injury: cell-specific bioactivation/deactivation of circulating pneumotoxins.
    Dinsdale D
    Int J Exp Pathol; 1995 Dec; 76(6):393-401. PubMed ID: 8652359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the lung in accumulation and metabolism of xenobiotic compounds--implications for chemically induced toxicity.
    Foth H
    Crit Rev Toxicol; 1995; 25(2):165-205. PubMed ID: 7612175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between the catalytic activities of rabbit pulmonary cytochrome P-450 isozymes and the lung-specific toxicity of the furan derivative, 4-ipomeanol.
    Wolf CR; Statham CN; McMenamin MG; Bend JR; Boyd MR; Philpot RM
    Mol Pharmacol; 1982 Nov; 22(3):738-44. PubMed ID: 7155130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What are the principal enzymes oxidizing the xenobiotics in plants: cytochromes P-450 or peroxidases? (A hypothesis).
    Stiborová M; Anzenbacher P
    Gen Physiol Biophys; 1991 Apr; 10(2):209-16. PubMed ID: 1864497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic capabilities of CYP2F2 with various pulmonary toxicants and its relative abundance in mouse lung subcompartments.
    Shultz MA; Morin D; Chang AM; Buckpitt A
    J Pharmacol Exp Ther; 2001 Feb; 296(2):510-9. PubMed ID: 11160638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenobiotic metabolism in the nasal epithelia.
    Jenner J; Dodd GH
    Drug Metabol Drug Interact; 1988; 6(2):123-48. PubMed ID: 3076530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro metabolic activation of the pulmonary toxin, 4-ipomeanol, in nonciliated bronchiolar epithelial (Clara) and alveolar type II cells isolated from rabbit lung.
    Devereux TR; Jones KG; Bend JR; Fouts JR; Statham CN; Boyd MR
    J Pharmacol Exp Ther; 1982 Jan; 220(1):223-7. PubMed ID: 7053419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol.
    Boyd MR; Burka LT
    J Pharmacol Exp Ther; 1978 Dec; 207(3):687-97. PubMed ID: 731424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human placenta: a human organ for developmental toxicology research and biomonitoring.
    Myllynen P; Pasanen M; Pelkonen O
    Placenta; 2005 May; 26(5):361-71. PubMed ID: 15850640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism-based predictions of interactions.
    Oesch F; Oesch-Bartlomowicz B; Arens J; Fähndrich F; Vogel E; Friedberg T; Glatt H
    Environ Health Perspect; 1994 Nov; 102 Suppl 9(Suppl 9):5-9. PubMed ID: 7698085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol. Predictive value of covalent binding in studies of target organ toxicities by reactive metabolites.
    Dutcher JS; Boyd MR
    Biochem Pharmacol; 1979 Dec; 28(23):3367-72. PubMed ID: 119540
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs.
    Shimada T; Yamazaki H; Mimura M; Wakamiya N; Ueng YF; Guengerich FP; Inui Y
    Drug Metab Dispos; 1996 May; 24(5):515-22. PubMed ID: 8723730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated susceptibility to 4-ipomeanol cytotoxicity in immature Clara cells of neonatal rabbits.
    Plopper CG; Weir AJ; Nishio SJ; Chang A; Voit M; Philpot RM; Buckpitt AR
    J Pharmacol Exp Ther; 1994 May; 269(2):867-80. PubMed ID: 8182556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro studies on the metabolic activation of the pulmonary toxin, 4-ipomeanol, by rat lung and liver microsomes.
    Boyd MR; Burka LT; Wilson BJ; Sasame HA
    J Pharmacol Exp Ther; 1978 Dec; 207(3):677-86. PubMed ID: 32381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved fluorometric assay for dosimetry of benzo(a)pyrene diol-epoxide-DNA adducts in smokers' lung: comparisons with total bulky adducts and aryl hydrocarbon hydroxylase activity.
    Alexandrov K; Rojas M; Geneste O; Castegnaro M; Camus AM; Petruzzelli S; Giuntini C; Bartsch H
    Cancer Res; 1992 Nov; 52(22):6248-53. PubMed ID: 1423269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of tolerance to the pulmonary toxin, 4-ipomeanol.
    Boyd MR; Burka LT; Wilson BJ; Sastry BV
    Toxicology; 1981; 19(2):85-100. PubMed ID: 6791310
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.