These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 22006833)
1. Photosensitizing hollow nanocapsules for combination cancer therapy. Son KJ; Yoon HJ; Kim JH; Jang WD; Lee Y; Koh WG Angew Chem Int Ed Engl; 2011 Dec; 50(50):11968-71. PubMed ID: 22006833 [No Abstract] [Full Text] [Related]
2. Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Yang S; Li N; Liu Z; Sha W; Chen D; Xu Q; Lu J Nanoscale; 2014 Dec; 6(24):14903-10. PubMed ID: 25362857 [TBL] [Abstract][Full Text] [Related]
3. Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy. Kojima C; Toi Y; Harada A; Kono K Bioconjug Chem; 2007; 18(3):663-70. PubMed ID: 17375896 [TBL] [Abstract][Full Text] [Related]
4. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles. Yuan Y; Min Y; Hu Q; Xing B; Liu B Nanoscale; 2014 Oct; 6(19):11259-72. PubMed ID: 25130329 [TBL] [Abstract][Full Text] [Related]
5. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Wang Y; Xiao Y; Tang R Chemistry; 2014 Sep; 20(37):11826-34. PubMed ID: 25077695 [TBL] [Abstract][Full Text] [Related]
6. A facile strategy to generate polymeric nanoparticles for synergistic chemo-photodynamic therapy. Deng X; Liang Y; Peng X; Su T; Luo S; Cao J; Gu Z; He B Chem Commun (Camb); 2015 Mar; 51(20):4271-4. PubMed ID: 25673062 [TBL] [Abstract][Full Text] [Related]
7. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells. Peralta DV; Heidari Z; Dash S; Tarr MA ACS Appl Mater Interfaces; 2015 Apr; 7(13):7101-11. PubMed ID: 25768122 [TBL] [Abstract][Full Text] [Related]
9. Nanoemulsion-templated multilayer nanocapsules for cyanine-type photosensitizer delivery to human breast carcinoma cells. Bazylińska U; Pietkiewicz J; Saczko J; Nattich-Rak M; Rossowska J; Garbiec A; Wilk KA Eur J Pharm Sci; 2012 Sep; 47(2):406-20. PubMed ID: 22796218 [TBL] [Abstract][Full Text] [Related]
10. Transporting and shielding photosensitisers by using water-soluble organometallic cages: a new strategy in drug delivery and photodynamic therapy. Therrien B Chemistry; 2013 Jun; 19(26):8378-86. PubMed ID: 23737435 [TBL] [Abstract][Full Text] [Related]
11. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. Roy I; Ohulchanskyy TY; Pudavar HE; Bergey EJ; Oseroff AR; Morgan J; Dougherty TJ; Prasad PN J Am Chem Soc; 2003 Jul; 125(26):7860-5. PubMed ID: 12823004 [TBL] [Abstract][Full Text] [Related]
12. Polymer Stabilized Fe3O4-Graphene as an Amphiphilic Drug Carrier for Thermo-Chemotherapy of Cancer. Swain AK; Pradhan L; Bahadur D ACS Appl Mater Interfaces; 2015 Apr; 7(15):8013-22. PubMed ID: 25821899 [TBL] [Abstract][Full Text] [Related]
13. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. Gao L; Fei J; Zhao J; Li H; Cui Y; Li J ACS Nano; 2012 Sep; 6(9):8030-40. PubMed ID: 22931130 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of multifunctional layer-by-layer nanocapsules toward the design of theragnostic nanoplatform. Yoon HJ; Lim TG; Kim JH; Cho YM; Kim YS; Chung US; Kim JH; Choi BW; Koh WG; Jang WD Biomacromolecules; 2014 Apr; 15(4):1382-9. PubMed ID: 24598017 [TBL] [Abstract][Full Text] [Related]
15. LaF3:Ln mesoporous spheres: controllable synthesis, tunable luminescence and application for dual-modal chemo-/photo-thermal therapy. Lv R; Yang G; He F; Dai Y; Gai S; Yang P Nanoscale; 2014 Dec; 6(24):14799-809. PubMed ID: 25359551 [TBL] [Abstract][Full Text] [Related]
16. Hyaluronan-decorated polymer nanoparticles targeting the CD44 receptor for the combined photo/chemo-therapy of cancer. Maiolino S; Moret F; Conte C; Fraix A; Tirino P; Ungaro F; Sortino S; Reddi E; Quaglia F Nanoscale; 2015 Mar; 7(13):5643-53. PubMed ID: 25648974 [TBL] [Abstract][Full Text] [Related]
17. Current status of liposomal porphyrinoid photosensitizers. Skupin-Mrugalska P; Piskorz J; Goslinski T; Mielcarek J; Konopka K; Düzgüneş N Drug Discov Today; 2013 Aug; 18(15-16):776-84. PubMed ID: 23591149 [TBL] [Abstract][Full Text] [Related]
18. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Yong Y; Zhou L; Gu Z; Yan L; Tian G; Zheng X; Liu X; Zhang X; Shi J; Cong W; Yin W; Zhao Y Nanoscale; 2014 Sep; 6(17):10394-403. PubMed ID: 25047651 [TBL] [Abstract][Full Text] [Related]
19. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy. Spyratou E; Makropoulou M; Mourelatou EA; Demetzos C Cancer Lett; 2012 Dec; 327(1-2):111-22. PubMed ID: 22265863 [TBL] [Abstract][Full Text] [Related]
20. Hybrid organic nanotubes with dual functionalities localized on cylindrical nanochannels control the release of doxorubicin. Ding W; Kameta N; Minamikawa H; Wada M; Shimizu T; Masuda M Adv Healthc Mater; 2012 Nov; 1(6):699-706. PubMed ID: 23184820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]