BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 22007000)

  • 1. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression.
    Wang Q; Bailey CG; Ng C; Tiffen J; Thoeng A; Minhas V; Lehman ML; Hendy SC; Buchanan G; Nelson CC; Rasko JE; Holst J
    Cancer Res; 2011 Dec; 71(24):7525-36. PubMed ID: 22007000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development.
    Wang Q; Tiffen J; Bailey CG; Lehman ML; Ritchie W; Fazli L; Metierre C; Feng YJ; Li E; Gleave M; Buchanan G; Nelson CC; Rasko JE; Holst J
    J Natl Cancer Inst; 2013 Oct; 105(19):1463-73. PubMed ID: 24052624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells.
    Kobayashi K; Ohnishi A; Promsuk J; Shimizu S; Kanai Y; Shiokawa Y; Nagane M
    Neurosurgery; 2008 Feb; 62(2):493-503; discussion 503-4. PubMed ID: 18382329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the androgen receptor pathway during progression of prostate cancer.
    Hendriksen PJ; Dits NF; Kokame K; Veldhoven A; van Weerden WM; Bangma CH; Trapman J; Jenster G
    Cancer Res; 2006 May; 66(10):5012-20. PubMed ID: 16707422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoterpene glycoside ESK246 from Pittosporum targets LAT3 amino acid transport and prostate cancer cell growth.
    Wang Q; Grkovic T; Font J; Bonham S; Pouwer RH; Bailey CG; Moran AM; Ryan RM; Rasko JE; Jormakka M; Quinn RJ; Holst J
    ACS Chem Biol; 2014 Jun; 9(6):1369-76. PubMed ID: 24762008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-type amino acid transporters LAT1 and LAT4 in cancer: uptake of 3-O-methyl-6-18F-fluoro-L-dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo.
    Haase C; Bergmann R; Fuechtner F; Hoepping A; Pietzsch J
    J Nucl Med; 2007 Dec; 48(12):2063-71. PubMed ID: 18056335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EGF-activated PI3K/Akt signalling coordinates leucine uptake by regulating LAT3 expression in prostate cancer.
    Zhang BK; Moran AM; Bailey CG; Rasko JEJ; Holst J; Wang Q
    Cell Commun Signal; 2019 Jul; 17(1):83. PubMed ID: 31345230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of LAT3 in prostate cancer: Its downstream target and relationship with androgen receptor.
    Rii J; Sakamoto S; Sugiura M; Kanesaka M; Fujimoto A; Yamada Y; Maimaiti M; Ando K; Wakai K; Xu M; Imamura Y; Shindo N; Hirota T; Kaneda A; Kanai Y; Ikehara Y; Anzai N; Ichikawa T
    Cancer Sci; 2021 Sep; 112(9):3871-3883. PubMed ID: 34050700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells.
    Xu M; Sakamoto S; Matsushima J; Kimura T; Ueda T; Mizokami A; Kanai Y; Ichikawa T
    J Urol; 2016 May; 195(5):1588-1597. PubMed ID: 26682754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression.
    Sun A; Tang J; Hong Y; Song J; Terranova PF; Thrasher JB; Svojanovsky S; Wang HG; Li B
    Prostate; 2008 Mar; 68(4):453-61. PubMed ID: 18196538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.
    Kobayashi T; Shimizu Y; Terada N; Yamasaki T; Nakamura E; Toda Y; Nishiyama H; Kamoto T; Ogawa O; Inoue T
    Prostate; 2010 Jun; 70(8):866-74. PubMed ID: 20127734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. c-Myc is crucial for the expression of LAT1 in MIA Paca-2 human pancreatic cancer cells.
    Hayashi K; Jutabha P; Endou H; Anzai N
    Oncol Rep; 2012 Sep; 28(3):862-6. PubMed ID: 22736142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP.
    Iwasa Y; Mizokami A; Miwa S; Koshida K; Namiki M
    Int J Urol; 2007 Mar; 14(3):233-9. PubMed ID: 17430262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platelet-derived growth factor stimulates LAT1 gene expression in vascular smooth muscle: role in cell growth.
    Liu XM; Reyna SV; Ensenat D; Peyton KJ; Wang H; Schafer AI; Durante W
    FASEB J; 2004 Apr; 18(6):768-70. PubMed ID: 14977877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice.
    Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ
    Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells.
    Shiota M; Yokomizo A; Kashiwagi E; Takeuchi A; Fujimoto N; Uchiumi T; Naito S
    Free Radic Biol Med; 2011 Jul; 51(1):78-87. PubMed ID: 21539911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells.
    Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A
    Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of transforming growth factor-beta signaling suppresses progression of androgen-independent human prostate cancer in nude mice.
    Zhang F; Lee J; Lu S; Pettaway CA; Dong Z
    Clin Cancer Res; 2005 Jun; 11(12):4512-20. PubMed ID: 15958637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GCP-mediated growth inhibition and apoptosis of prostate cancer cells via androgen receptor-dependent and -independent mechanisms.
    Tepper CG; Vinall RL; Wee CB; Xue L; Shi XB; Burich R; Mack PC; de Vere White RW
    Prostate; 2007 Apr; 67(5):521-35. PubMed ID: 17252539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-2-microglobulin expression correlates with high-grade prostate cancer and specific defects in androgen signaling.
    Mink SR; Hodge A; Agus DB; Jain A; Gross ME
    Prostate; 2010 Aug; 70(11):1201-10. PubMed ID: 20564426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.