BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22007131)

  • 1. Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone.
    Genikhovich G; Technau U
    Development; 2011 Nov; 138(22):4911-9. PubMed ID: 22007131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa).
    Martindale MQ; Pang K; Finnerty JR
    Development; 2004 May; 131(10):2463-74. PubMed ID: 15128674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of ß-catenin/TCF signaling.
    Röttinger E; Dahlin P; Martindale MQ
    PLoS Genet; 2012; 8(12):e1003164. PubMed ID: 23300467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology.
    Steinmetz PRH; Aman A; Kraus JEM; Technau U
    Nat Ecol Evol; 2017 Oct; 1(10):1535-1542. PubMed ID: 29185520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms.
    Nakanishi N; Renfer E; Technau U; Rentzsch F
    Development; 2012 Jan; 139(2):347-57. PubMed ID: 22159579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of myostatin/gdf8/11 in the starlet sea anemone Nematostella vectensis.
    Saina M; Technau U
    J Exp Zool B Mol Dev Evol; 2009 Nov; 312(7):780-8. PubMed ID: 19533681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cadherin switch marks germ layer formation in the diploblastic sea anemone
    Pukhlyakova EA; Kirillova AO; Kraus YA; Zimmermann B; Technau U
    Development; 2019 Oct; 146(20):. PubMed ID: 31540916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic BMP-cWNT signaling in the cnidarian
    Wijesena N; Simmons DK; Martindale MQ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5608-E5615. PubMed ID: 28652368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis.
    Mazza ME; Pang K; Martindale MQ; Finnerty JR
    J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):494-506. PubMed ID: 17377951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cas9-mediated excision of
    Servetnick MD; Steinworth B; Babonis LS; Simmons D; Salinas-Saavedra M; Martindale MQ
    Development; 2017 Aug; 144(16):2951-2960. PubMed ID: 28705897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis.
    Richards GS; Rentzsch F
    Development; 2014 Dec; 141(24):4681-9. PubMed ID: 25395455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BMPs and chordin regulate patterning of the directive axis in a sea anemone.
    Saina M; Genikhovich G; Renfer E; Technau U
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18592-7. PubMed ID: 19833871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse Genetic Approaches to Investigate the Neurobiology of the Cnidarian Sea Anemone Nematostella vectensis.
    Havrilak JA; Layden MJ
    Methods Mol Biol; 2020; 2047():25-43. PubMed ID: 31552647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ancestral Wnt-Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes.
    Schwaiger M; Andrikou C; Dnyansagar R; Murguia PF; Paganos P; Voronov D; Zimmermann B; Lebedeva T; Schmidt HA; Genikhovich G; Benvenuto G; Arnone MI; Technau U
    Nat Ecol Evol; 2022 Dec; 6(12):1921-1939. PubMed ID: 36396969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain.
    Zhu B; Ramachandran B; Gulick T
    J Biol Chem; 2005 Aug; 280(31):28749-60. PubMed ID: 15834131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians.
    Technau U
    Mech Dev; 2020 Sep; 163():103628. PubMed ID: 32603823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer.
    Hashimshony T; Feder M; Levin M; Hall BK; Yanai I
    Nature; 2015 Mar; 519(7542):219-22. PubMed ID: 25487147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation.
    Matus DQ; Thomsen GH; Martindale MQ
    Curr Biol; 2006 Mar; 16(5):499-505. PubMed ID: 16527745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NF-κB is required for cnidocyte development in the sea anemone Nematostella vectensis.
    Wolenski FS; Bradham CA; Finnerty JR; Gilmore TD
    Dev Biol; 2013 Jan; 373(1):205-15. PubMed ID: 23063796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity.
    Zhu B; Gulick T
    Mol Cell Biol; 2004 Sep; 24(18):8264-75. PubMed ID: 15340086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.