These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22007166)

  • 21. Fitting neuron models to spike trains.
    Rossant C; Goodman DF; Fontaine B; Platkiewicz J; Magnusson AK; Brette R
    Front Neurosci; 2011; 5():9. PubMed ID: 21415925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the accuracy and computational cost of spiking neuron implementation.
    Valadez-Godínez S; Sossa H; Santiago-Montero R
    Neural Netw; 2020 Feb; 122():196-217. PubMed ID: 31689679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PyGeNN: A Python Library for GPU-Enhanced Neural Networks.
    Knight JC; Komissarov A; Nowotny T
    Front Neuroinform; 2021; 15():659005. PubMed ID: 33967731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.
    Nobukawa S; Nishimura H
    Int J Neural Syst; 2016 Aug; 26(5):1550040. PubMed ID: 26678248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.
    Qiao N; Mostafa H; Corradi F; Osswald M; Stefanini F; Sumislawska D; Indiveri G
    Front Neurosci; 2015; 9():141. PubMed ID: 25972778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and disruption of tonotopy in a large-scale model of the auditory cortex.
    Tomková M; Tomek J; Novák O; Zelenka O; Syka J; Brom C
    J Comput Neurosci; 2015 Oct; 39(2):131-53. PubMed ID: 26344164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brian2GeNN: accelerating spiking neural network simulations with graphics hardware.
    Stimberg M; Goodman DFM; Nowotny T
    Sci Rep; 2020 Jan; 10(1):410. PubMed ID: 31941893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator.
    Crone JC; Vindiola MM; Yu AB; Boothe DL; Beeman D; Oie KS; Franaszczuk PJ
    Front Neuroinform; 2019; 13():69. PubMed ID: 31803040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brian 2, an intuitive and efficient neural simulator.
    Stimberg M; Brette R; Goodman DF
    Elife; 2019 Aug; 8():. PubMed ID: 31429824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EDEN: A High-Performance, General-Purpose, NeuroML-Based Neural Simulator.
    Panagiotou S; Sidiropoulos H; Soudris D; Negrello M; Strydis C
    Front Neuroinform; 2022; 16():724336. PubMed ID: 35669596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The brian simulator.
    Goodman DF; Brette R
    Front Neurosci; 2009 Sep; 3(2):192-7. PubMed ID: 20011141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex.
    Zamarreño-Ramos C; Camuñas-Mesa LA; Pérez-Carrasco JA; Masquelier T; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2011; 5():26. PubMed ID: 21442012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brian: a simulator for spiking neural networks in python.
    Goodman D; Brette R
    Front Neuroinform; 2008; 2():5. PubMed ID: 19115011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.
    Wang RM; Thakur CS; van Schaik A
    Front Neurosci; 2018; 12():213. PubMed ID: 29692702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex.
    Kimura F; Itami C
    J Neurosci; 2019 May; 39(20):3784-3791. PubMed ID: 30877173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spike-timing-dependent construction.
    Lightheart T; Grainger S; Lu TF
    Neural Comput; 2013 Oct; 25(10):2611-45. PubMed ID: 23895051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PyNN: A Common Interface for Neuronal Network Simulators.
    Davison AP; Brüderle D; Eppler J; Kremkow J; Muller E; Pecevski D; Perrinet L; Yger P
    Front Neuroinform; 2008; 2():11. PubMed ID: 19194529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.
    Igarashi J; Shouno O; Fukai T; Tsujino H
    Neural Netw; 2011 Nov; 24(9):950-60. PubMed ID: 21764258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.
    Potjans W; Morrison A; Diesmann M
    Front Comput Neurosci; 2010; 4():141. PubMed ID: 21151370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.