These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 22007750)

  • 1. Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery.
    Sivakumaran D; Maitland D; Hoare T
    Biomacromolecules; 2011 Nov; 12(11):4112-20. PubMed ID: 22007750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning drug release from smart microgel-hydrogel composites via cross-linking.
    Sivakumaran D; Maitland D; Oszustowicz T; Hoare T
    J Colloid Interface Sci; 2013 Feb; 392():422-430. PubMed ID: 23137903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers.
    Wang F; Li Z; Khan M; Tamama K; Kuppusamy P; Wagner WR; Sen CK; Guan J
    Acta Biomater; 2010 Jun; 6(6):1978-91. PubMed ID: 20004745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swelling kinetics of microgels embedded in a polyacrylamide hydrogel matrix.
    Huang N; Guan Y; Zhu XX; Zhang Y
    Chemphyschem; 2014 Jun; 15(9):1785-92. PubMed ID: 24861868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior.
    Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z
    Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release.
    Zhang JT; Keller TF; Bhat R; Garipcan B; Jandt KD
    Acta Biomater; 2010 Oct; 6(10):3890-8. PubMed ID: 20466078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of colloidal microgels as a (trans)dermal drug delivery system.
    Lopez VC; Hadgraft J; Snowden MJ
    Int J Pharm; 2005 Mar; 292(1-2):137-47. PubMed ID: 15725560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs.
    Town AR; Giardiello M; Gurjar R; Siccardi M; Briggs ME; Akhtar R; McDonald TO
    Nanoscale; 2017 May; 9(19):6302-6314. PubMed ID: 28368063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of conductometric assessments for development of pulsed release of lidocaine hydrochloride from thermosensitive N-isopropylacrylamide microgels.
    Musiał W; Kokol V; Voncina B
    Polim Med; 2009; 39(4):15-24. PubMed ID: 20099732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a temperature-sensitive composite hydrogel for drug delivery applications.
    Ramanan RM; Chellamuthu P; Tang L; Nguyen KT
    Biotechnol Prog; 2006; 22(1):118-25. PubMed ID: 16454501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ gelation of P(NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold.
    Gan T; Zhang Y; Guan Y
    Biomacromolecules; 2009 Jun; 10(6):1410-5. PubMed ID: 19366198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres.
    Ma L; Liu M; Liu H; Chen J; Cui D
    Int J Pharm; 2010 Jan; 385(1-2):86-91. PubMed ID: 19879345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems.
    Coughlan DC; Corrigan OI
    Int J Pharm; 2006 Apr; 313(1-2):163-74. PubMed ID: 16517105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature.
    Ghugare SV; Chiessi E; Telling MT; Deriu A; Gerelli Y; Wuttke J; Paradossi G
    J Phys Chem B; 2010 Aug; 114(32):10285-93. PubMed ID: 20701364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged analgesia from Bupisome and Bupigel formulations: from design and fabrication to improved stability.
    Cohen R; Kanaan H; Grant GJ; Barenholz Y
    J Control Release; 2012 Jun; 160(2):346-52. PubMed ID: 22233969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable, dual cross-linkable polyphosphazene blend hydrogels.
    Potta T; Chun C; Song SC
    Biomaterials; 2010 Nov; 31(32):8107-20. PubMed ID: 20692695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.
    Merino S; Martín C; Kostarelos K; Prato M; Vázquez E
    ACS Nano; 2015 May; 9(5):4686-97. PubMed ID: 25938172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel.
    Zhang XZ; Jo Lewis P; Chu CC
    Biomaterials; 2005 Jun; 26(16):3299-309. PubMed ID: 15603825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery.
    Chen YY; Wu HC; Sun JS; Dong GC; Wang TW
    Langmuir; 2013 Mar; 29(11):3721-9. PubMed ID: 23441993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable block copolymer hydrogels for sustained release of a PEGylated drug.
    Yu L; Chang GT; Zhang H; Ding JD
    Int J Pharm; 2008 Feb; 348(1-2):95-106. PubMed ID: 17825508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.