BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22007834)

  • 1. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.
    Li J; Mitzi DB; Shenoy VB
    ACS Nano; 2011 Nov; 5(11):8613-9. PubMed ID: 22007834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells.
    Cojocaru-Mirédin O; Choi P; Wuerz R; Raabe D
    Ultramicroscopy; 2011 May; 111(6):552-6. PubMed ID: 21288643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain boundary atomic structures and light-element visualization in ceramics: combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations.
    Ikuhara Y
    J Electron Microsc (Tokyo); 2011; 60 Suppl 1():S173-88. PubMed ID: 21844588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of Alkali Metals in Polycrystalline CuInSe
    Chugh M; Kühne TD; Mirhosseini H
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14821-14829. PubMed ID: 30924332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hall effect measurements on Bridgman-grown CuInSe2 with sodium.
    Myers HF; Champness CH; Shih I
    Nanotechnology; 2010 Apr; 21(13):134004. PubMed ID: 20208101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites.
    Noel NK; Abate A; Stranks SD; Parrott ES; Burlakov VM; Goriely A; Snaith HJ
    ACS Nano; 2014 Oct; 8(10):9815-21. PubMed ID: 25171692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain boundary strengthening in alumina by rare earth impurities.
    Buban JP; Matsunaga K; Chen J; Shibata N; Ching WY; Yamamoto T; Ikuhara Y
    Science; 2006 Jan; 311(5758):212-5. PubMed ID: 16410521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary-Phase-Assisted Grain Boundary Migration in CuInSe_{2}.
    Li C; Sanli ES; Barragan-Yani D; Stange H; Heinemann MD; Greiner D; Sigle W; Mainz R; Albe K; Abou-Ras D; van Aken PA
    Phys Rev Lett; 2020 Mar; 124(9):095702. PubMed ID: 32202872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb
    Williams RE; Ramasse QM; McKenna KP; Phillips LJ; Yates PJ; Hutter OS; Durose K; Major JD; Mendis BG
    ACS Appl Mater Interfaces; 2020 May; 12(19):21730-21738. PubMed ID: 32314567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation.
    Long R; Liu J; Prezhdo OV
    J Am Chem Soc; 2016 Mar; 138(11):3884-90. PubMed ID: 26930494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure, defect properties, and optimization of the band gap of the earth-abundant and low-toxicity photovoltaic absorber Cu
    Huang D; Lin C; Xue Y; Chen S; Zhao YJ; Persson C
    Phys Chem Chem Phys; 2022 Oct; 24(41):25258-25269. PubMed ID: 36222461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlating the Local Defect-Level Density with the Macroscopic Composition and Energetics of Chalcopyrite Thin-Film Surfaces.
    Bröker S; Kück D; Timmer A; Lauermann I; Ümsür B; Greiner D; Kaufmann CA; Mönig H
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13062-72. PubMed ID: 26010380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain-boundary-enhanced carrier collection in CdTe solar cells.
    Li C; Wu Y; Poplawsky J; Pennycook TJ; Paudel N; Yin W; Haigh SJ; Oxley MP; Lupini AR; Al-Jassim M; Pennycook SJ; Yan Y
    Phys Rev Lett; 2014 Apr; 112(15):156103. PubMed ID: 24785058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of atomic diffusion at twin-modified grain boundaries in copper.
    Chen KC; Wu WW; Liao CN; Chen LJ; Tu KN
    Science; 2008 Aug; 321(5892):1066-9. PubMed ID: 18719278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Enhanced Carrier Collection in Cu(In,Ga)Se
    Raghuwanshi M; Thöner B; Soni P; Wuttig M; Wuerz R; Cojocaru-Mirédin O
    ACS Appl Mater Interfaces; 2018 May; 10(17):14759-14766. PubMed ID: 29633615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Copassivation Effect of Cl and Se for CdTe Grain Boundaries.
    Shah A; Nicholson AP; Fiducia TAM; Abbas A; Pandey R; Liu J; Grovenor C; Walls JM; Sampath WS; Munshi AH
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35086-35096. PubMed ID: 34264063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic-Organic Lead Halide Solar Cells.
    Kim GY; Oh SH; Nguyen BP; Jo W; Kim BJ; Lee DG; Jung HS
    J Phys Chem Lett; 2015 Jun; 6(12):2355-62. PubMed ID: 26266617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films.
    Yan Y; Jiang CS; Noufi R; Wei SH; Moutinho HR; Al-Jassim MM
    Phys Rev Lett; 2007 Dec; 99(23):235504. PubMed ID: 18233382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation, migration, and clustering of point defects in CuInSe2 from first principles.
    Oikkonen LE; Ganchenkova MG; Seitsonen AP; Nieminen RM
    J Phys Condens Matter; 2014 Aug; 26(34):345501. PubMed ID: 25105526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced current transport at grain boundaries in high-T(c) superconductors.
    Klie RF; Buban JP; Varela M; Franceschetti A; Jooss C; Zhu Y; Browning ND; Pantelides ST; Pennycook SJ
    Nature; 2005 May; 435(7041):475-8. PubMed ID: 15917804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.