These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 22007907)
21. Eprinomectin from a sustained release formulation adversely affected dung breeding insects. Nieman CC; Floate KD; Düring RA; Heinrich AP; Young DK; Schaefer DM PLoS One; 2018; 13(8):e0201074. PubMed ID: 30080892 [TBL] [Abstract][Full Text] [Related]
22. A review on the effect of macrocyclic lactones on dung-dwelling insects: Toxicity of macrocyclic lactones to dung beetles. Jacobs CT; Scholtz CH Onderstepoort J Vet Res; 2015 Apr; 82(1):858. PubMed ID: 26017637 [TBL] [Abstract][Full Text] [Related]
23. Field-scale dispersal of Aphodius dung beetles (Coleoptera: Scarabaeidae) in response to avermectin treatments on pastured cattle. Webb L; Beaumont DJ; Nager RG; McCracken DI Bull Entomol Res; 2010 Apr; 100(2):175-83. PubMed ID: 19586576 [TBL] [Abstract][Full Text] [Related]
24. New test strategy for dung beetles during the authorization process of parasiticides. Adler N; Bachmann J; Römbke J Integr Environ Assess Manag; 2013 Jul; 9(3):524-30. PubMed ID: 23325499 [TBL] [Abstract][Full Text] [Related]
25. Season-Long Simplification of Insect Communities in Dung From Cattle Treated With an Extended-Release Formulation of the Parasiticide Eprinomectin. Backmeyer SJ; Goater C; Challis JK; Floate KD Environ Toxicol Chem; 2023 Mar; 42(3):684-697. PubMed ID: 36621957 [TBL] [Abstract][Full Text] [Related]
26. Environmental risk assessment of veterinary pharmaceuticals: development of a standard laboratory test with the dung beetle Aphodius constans. Römbke J; Hempel H; Scheffczyk A; Schallnass HJ; Alvinerie M; Lumaret JP Chemosphere; 2007 Nov; 70(1):57-64. PubMed ID: 17825355 [TBL] [Abstract][Full Text] [Related]
27. Effects of the Antiparasitic Drug Moxidectin in Cattle Dung on Zooplankton and Benthic Invertebrates and its Accumulation in a Water-Sediment System. Mesa LM; Hörler J; Lindt I; Gutiérrez MF; Negro L; Mayora G; Montalto L; Ballent M; Lifschitz A Arch Environ Contam Toxicol; 2018 Aug; 75(2):316-326. PubMed ID: 29846763 [TBL] [Abstract][Full Text] [Related]
28. Colonisation and degradation of dung pats after subcutaneous treatment of cattle with ivermectin or levamisole. Barth D; Heinze-Mutz EM; Langholff W; Roncalli RA; Schlüter D Appl Parasitol; 1994 Nov; 35(4):277-93. PubMed ID: 7812316 [TBL] [Abstract][Full Text] [Related]
29. A field test of the effect of spiked ivermectin concentrations on the biodiversity of coprophagous dung insects in Switzerland. Jochmann R; Lipkow E; Blanckenhorn WU Environ Toxicol Chem; 2016 Aug; 35(8):1947-52. PubMed ID: 26013817 [TBL] [Abstract][Full Text] [Related]
30. Biological and chemical assays of pyrethroids in cattle dung. Vale GA; Grant IF; Dewhurst CF; Aigreau D Bull Entomol Res; 2004 Jun; 94(3):273-82. PubMed ID: 15191628 [TBL] [Abstract][Full Text] [Related]
31. Significance of moisture content of dung pats for colonisation and degradation of cattle dung. Barth D; Karrer M; Heinze-Mutz EM Appl Parasitol; 1995 Feb; 36(1):11-21. PubMed ID: 7780446 [TBL] [Abstract][Full Text] [Related]
32. Standardized laboratory tests with 21 species of temperate and tropical sepsid flies confirm their suitability as bioassays of pharmaceutical residues (ivermectin) in cattle dung. Blanckenhorn WU; Puniamoorthy N; Schäfer MA; Scheffczyk A; Römbke J Ecotoxicol Environ Saf; 2013 Mar; 89():21-8. PubMed ID: 23260241 [TBL] [Abstract][Full Text] [Related]
33. Environmental risk assessment of ivermectin: A case study. Liebig M; Fernandez AA; Blübaum-Gronau E; Boxall A; Brinke M; Carbonell G; Egeler P; Fenner K; Fernandez C; Fink G; Garric J; Halling-Sørensen B; Knacker T; Krogh KA; Küster A; Löffler D; Cots MA; Pope L; Prasse C; Römbke J; Rönnefahrt I; Schneider MK; Schweitzer N; Tarazona JV; Ternes TA; Traunspurger W; Wehrhan A; Duis K Integr Environ Assess Manag; 2010 Jul; 6 Suppl():567-87. PubMed ID: 20821718 [TBL] [Abstract][Full Text] [Related]
34. Helminthic control on grazing ruminants and environmental risks in South America. Suarez VH Vet Res; 2002; 33(5):563-73. PubMed ID: 12387490 [TBL] [Abstract][Full Text] [Related]
35. The impact of overgrazing on dung beetle diversity in the Italian Maritime Alps. Negro M; Rolando A; Palestrini C Environ Entomol; 2011 Oct; 40(5):1081-92. PubMed ID: 22251720 [TBL] [Abstract][Full Text] [Related]
36. Environmental consequences of deltamethrin residues in cattle feces in an African agricultural landscape. Sands B; Mgidiswa N; Nyamukondiwa C; Wall R Ecol Evol; 2018 Mar; 8(5):2938-2946. PubMed ID: 29531707 [TBL] [Abstract][Full Text] [Related]
38. Modelling the impact of targeted anthelmintic treatment of cattle on dung fauna. Cooke AS; Morgan ER; Dungait JAJ Environ Toxicol Pharmacol; 2017 Oct; 55():94-98. PubMed ID: 28843101 [TBL] [Abstract][Full Text] [Related]
39. Analysis and dissipation of the antiparasitic agent ivermectin in cattle dung under different field conditions. Wohde M; Blanckenhorn WU; Floate KD; Lahr J; Lumaret JP; Römbke J; Scheffczyk A; Tixier T; Düring RA Environ Toxicol Chem; 2016 Aug; 35(8):1924-33. PubMed ID: 27100922 [TBL] [Abstract][Full Text] [Related]
40. Comparative effects of the parasiticide ivermectin on survival and reproduction of adult sepsid flies. Conforti S; Dietrich J; Kuhn T; Koppenhagen NV; Baur J; Rohner PT; Blanckenhorn WU; Schäfer MA Ecotoxicol Environ Saf; 2018 Nov; 163():215-222. PubMed ID: 30055386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]