BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 2200842)

  • 1. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans.
    Yokoyama K; Kaji H; Nishimura K; Miyaji M
    J Gen Microbiol; 1990 Jun; 136(6):1067-75. PubMed ID: 2200842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of microfilaments and microtubules during pH-regulated morphological transition in Candida albicans.
    Yokoyama K; Kaji H; Nishimura K; Miyaji M
    Microbiology (Reading); 1994 Feb; 140 ( Pt 2)():281-7. PubMed ID: 8180693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the cytoskeleton in the polarized growth of the germ tube in Candida albicans.
    Akashi T; Kanbe T; Tanaka K
    Microbiology (Reading); 1994 Feb; 140 ( Pt 2)():271-80. PubMed ID: 8180692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Penetration and damage of endothelial cells by Candida albicans.
    Filler SG; Swerdloff JN; Hobbs C; Luckett PM
    Infect Immun; 1995 Mar; 63(3):976-83. PubMed ID: 7868270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of microtubules and microfilaments in thyroid follicular epithelial cells of normal, TSH-treated, aged, and hypophysectomized rats.
    Kurihara H; Uchida K; Fujita H
    Histochemistry; 1990; 93(4):335-45. PubMed ID: 2323950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of microfilaments and microtubules in the invasion of INT-407 cells by Campylobacter jejuni.
    Biswas D; Itoh K; Sasakawa C
    Microbiol Immunol; 2003; 47(6):469-73. PubMed ID: 12906108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro.
    Sun QY; Lai L; Park KW; Kühholzer B; Prather RS; Schatten H
    Biol Reprod; 2001 Mar; 64(3):879-89. PubMed ID: 11207204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center.
    Rumsby M; Afsari F; Stark M; Hughson E
    Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of microtubules in the Saccharomyces cerevisiae cell cycle.
    Jacobs CW; Adams AE; Szaniszlo PJ; Pringle JR
    J Cell Biol; 1988 Oct; 107(4):1409-26. PubMed ID: 3049620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reorganization of microtubules and microfilaments in differentiating keratinocytes.
    Lewis L; Barrandon Y; Green H; Albrecht-Buehler G
    Differentiation; 1987; 36(3):228-33. PubMed ID: 2452759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of alpha S-subunit of the GS protein with microfilaments and microtubules: implication during adrenocorticotropin stimulation in rat adrenal glomerulosa cells.
    Côté M; Payet MD; Gallo-Payet N
    Endocrinology; 1997 Jan; 138(1):69-78. PubMed ID: 8977387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo.
    Priess JR; Hirsh DI
    Dev Biol; 1986 Sep; 117(1):156-73. PubMed ID: 3743895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] disrupts microtubule organization, cell division, and early development of sea urchin embryos.
    Holy J
    J Toxicol Environ Health A; 1998 Jun; 54(4):319-33. PubMed ID: 9638902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of microtubules and microfilaments in exocrine (ventral prostatic epithelial cells and pancreatic exocrine cells) and endocrine cells (cells of the adenohypophysis and islets of Langerhans). The relationship between cytoskeletons and epithelial-cell polarity.
    Kurihara H; Uchida K
    Histochemistry; 1987; 87(3):223-7. PubMed ID: 3308792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in cytoplasmic microtubule organization and spindle length between the two forms of the dimorphic fungus Candida albicans.
    Barton R; Gull K
    J Cell Sci; 1988 Oct; 91 ( Pt 2)():211-20. PubMed ID: 3077140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubules and actin microfilaments in the amphibian bladder granular cells.
    Hugon JS; Ibarra C; Valenti G; Bourguet J
    Biol Cell; 1989; 66(1-2):77-84. PubMed ID: 2804461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in Tetrahymena thermophila.
    Sugita M; Nakano K; Sato M; Toyooka K; Numata O
    Cell Motil Cytoskeleton; 2009 Jul; 66(7):371-7. PubMed ID: 19418560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis.
    Ingber DE; Prusty D; Sun Z; Betensky H; Wang N
    J Biomech; 1995 Dec; 28(12):1471-84. PubMed ID: 8666587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.