BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22008518)

  • 1. Role of charged residues in stabilization of Pyrococcus horikoshii CutA1, which has a denaturation temperature of nearly 150 °C.
    Matsuura Y; Takehira M; Sawano M; Ogasahara K; Tanaka T; Yamamoto H; Kunishima N; Katoh E; Yutani K
    FEBS J; 2012 Jan; 279(1):78-90. PubMed ID: 22008518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150 degrees C.
    Tanaka T; Sawano M; Ogasahara K; Sakaguchi Y; Bagautdinov B; Katoh E; Kuroishi C; Shinkai A; Yokoyama S; Yutani K
    FEBS Lett; 2006 Jul; 580(17):4224-30. PubMed ID: 16831434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable improvement in the heat stability of CutA1 from Escherichia coli by rational protein design.
    Matsuura Y; Ota M; Tanaka T; Takehira M; Ogasahara K; Bagautdinov B; Kunishima N; Yutani K
    J Biochem; 2010 Oct; 148(4):449-58. PubMed ID: 20639520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii,Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures.
    Sawano M; Yamamoto H; Ogasahara K; Kidokoro S; Katoh S; Ohnuma T; Katoh E; Yokoyama S; Yutani K
    Biochemistry; 2008 Jan; 47(2):721-30. PubMed ID: 18154307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategy for Stabilization of CutA1 Proteins Due to Ion-Ion Interactions at Temperatures of over 100 °C.
    Matsuura Y; Takehira M; Makhatadze GI; Joti Y; Naitow H; Kunishima N; Yutani K
    Biochemistry; 2018 May; 57(18):2649-2656. PubMed ID: 29648806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures.
    Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.
    Lee DY; Kim KA; Yu YG; Kim KS
    Biochem Biophys Res Commun; 2004 Jul; 320(3):900-6. PubMed ID: 15240133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization.
    Cheung YY; Lam SY; Chu WK; Allen MD; Bycroft M; Wong KB
    Biochemistry; 2005 Mar; 44(12):4601-11. PubMed ID: 15779887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.
    Mancusso R; Cruz E; Cataldi M; Mendoza C; Fuchs J; Wang H; Yang X; Tasayco ML
    Biochemistry; 2004 Apr; 43(13):3835-43. PubMed ID: 15049690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the strengths of salt bridges in the CutA1 protein using molecular dynamic simulations: a comparison of different force fields.
    Matsuura Y; Joti Y; Bagautdinov B; Yutani K
    FEBS Open Bio; 2019 Nov; 9(11):1939-1956. PubMed ID: 31509647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues.
    Matsuura Y; Takehira M; Joti Y; Ogasahara K; Tanaka T; Ono N; Kunishima N; Yutani K
    Sci Rep; 2015 Oct; 5():15545. PubMed ID: 26497062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel carbohydrate-binding surface layer protein from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Goda S; Koga T; Yamashita K; Kuriura R; Ueda T
    Biosci Biotechnol Biochem; 2018 Aug; 82(8):1327-1334. PubMed ID: 29629656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural and biochemical characterizations of a novel TET peptidase complex from Pyrococcus horikoshii reveal an integrated peptide degradation system in hyperthermophilic Archaea.
    Durá MA; Rosenbaum E; Larabi A; Gabel F; Vellieux FM; Franzetti B
    Mol Microbiol; 2009 Apr; 72(1):26-40. PubMed ID: 19291145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial phosphate transport protein. replacements of glutamic, aspartic, and histidine residues affect transport and protein conformation and point to a coupled proton transport path.
    Phelps A; Briggs C; Mincone L; Wohlrab H
    Biochemistry; 1996 Aug; 35(33):10757-62. PubMed ID: 8718866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperthermophile protein folding thermodynamics: differential scanning calorimetry and chemical denaturation of Sac7d.
    McCrary BS; Edmondson SP; Shriver JW
    J Mol Biol; 1996 Dec; 264(4):784-805. PubMed ID: 8980686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local stability identification and the role of key acidic amino acid residues in staphylococcal nuclease unfolding.
    Chen HM; Chan SC; Leung KW; Wu JM; Fang HJ; Tsong TY
    FEBS J; 2005 Aug; 272(15):3967-74. PubMed ID: 16045767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.