BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22008525)

  • 1. p32 regulates mitochondrial morphology and dynamics through parkin.
    Li Y; Wan OW; Xie W; Chung KK
    Neuroscience; 2011 Dec; 199():346-58. PubMed ID: 22008525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10.
    Bertolin G; Jacoupy M; Traver S; Ferrando-Miguel R; Saint Georges T; Grenier K; Ardila-Osorio H; Muriel MP; Takahashi H; Lees AJ; Gautier C; Guedin D; Coge F; Fon EA; Brice A; Corti O
    Cell Death Differ; 2015 Oct; 22(10):1563-76. PubMed ID: 25591737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1.
    Glauser L; Sonnay S; Stafa K; Moore DJ
    J Neurochem; 2011 Aug; 118(4):636-45. PubMed ID: 21615408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomic analysis of Parkin substrates in Drosophila neurons.
    Martinez A; Lectez B; Ramirez J; Popp O; Sutherland JD; Urbé S; Dittmar G; Clague MJ; Mayor U
    Mol Neurodegener; 2017 Apr; 12(1):29. PubMed ID: 28399880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.
    Koyano F; Yamano K; Kosako H; Tanaka K; Matsuda N
    J Biol Chem; 2019 Jun; 294(26):10300-10314. PubMed ID: 31110043
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria.
    Koyano F; Matsuda N
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2791-6. PubMed ID: 25700839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance.
    Buhlman L; Damiano M; Bertolin G; Ferrando-Miguel R; Lombès A; Brice A; Corti O
    Biochim Biophys Acta; 2014 Sep; 1843(9):2012-26. PubMed ID: 24878071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miro proteins prime mitochondria for Parkin translocation and mitophagy.
    Safiulina D; Kuum M; Choubey V; Gogichaishvili N; Liiv J; Hickey MA; Cagalinec M; Mandel M; Zeb A; Liiv M; Kaasik A
    EMBO J; 2019 Jan; 38(2):. PubMed ID: 30504269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax.
    Johnson BN; Berger AK; Cortese GP; Lavoie MJ
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6283-8. PubMed ID: 22460798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.
    Sung H; Tandarich LC; Nguyen K; Hollenbeck PJ
    J Neurosci; 2016 Jul; 36(28):7375-91. PubMed ID: 27413149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy.
    Van Laar VS; Roy N; Liu A; Rajprohat S; Arnold B; Dukes AA; Holbein CD; Berman SB
    Neurobiol Dis; 2015 Feb; 74():180-93. PubMed ID: 25478815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional modulation of parkin through physical interaction with SUMO-1.
    Um JW; Chung KC
    J Neurosci Res; 2006 Nov; 84(7):1543-54. PubMed ID: 16955485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson's Disease and Its Substrate-Involved Mouse Experimental Models.
    Torii S; Kasai S; Yoshida T; Yasumoto KI; Shimizu S
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32054064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sam50 Regulates PINK1-Parkin-Mediated Mitophagy by Controlling PINK1 Stability and Mitochondrial Morphology.
    Jian F; Chen D; Chen L; Yan C; Lu B; Zhu Y; Chen S; Shi A; Chan DC; Song Z
    Cell Rep; 2018 Jun; 23(10):2989-3005. PubMed ID: 29874585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunocytochemical Monitoring of PINK1/Parkin-Mediated Mitophagy in Cultured Cells.
    Fujimaki M; Saiki S; Sasazawa Y; Ishikawa KI; Imamichi Y; Sumiyoshi K; Hattori N
    Methods Mol Biol; 2018; 1759():19-27. PubMed ID: 28361483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkin interacts with Ambra1 to induce mitophagy.
    Van Humbeeck C; Cornelissen T; Hofkens H; Mandemakers W; Gevaert K; De Strooper B; Vandenberghe W
    J Neurosci; 2011 Jul; 31(28):10249-61. PubMed ID: 21753002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.
    Yamano K; Matsuda N; Tanaka K
    EMBO Rep; 2016 Mar; 17(3):300-16. PubMed ID: 26882551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkin and mitochondrial quality control: toward assembling the puzzle.
    Winklhofer KF
    Trends Cell Biol; 2014 Jun; 24(6):332-41. PubMed ID: 24485851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.