BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 220088)

  • 1. Production of superoxide by neutrophils: a reappraisal.
    Segal AW; Meshulam T
    FEBS Lett; 1979 Apr; 100(1):27-32. PubMed ID: 220088
    [No Abstract]   [Full Text] [Related]  

  • 2. Superoxide production by phagocytes. Another look at the effect of cytochrome c on oxygen uptake by stimulated neutrophils.
    Babior BM
    Biochem Biophys Res Commun; 1979 Nov; 91(1):222-6. PubMed ID: 229842
    [No Abstract]   [Full Text] [Related]  

  • 3. Significance of O2 availability and cycling on the respiratory burst response of human PMN's exposed to cytochrome c and superoxide dismutase.
    Green TR; Schaefer RE; Makler MT
    Biochem Biophys Res Commun; 1980 Jun; 94(4):1213-20. PubMed ID: 6249302
    [No Abstract]   [Full Text] [Related]  

  • 4. Continuous monitoring of oxygen consumption and superoxide production by particle-stimulated human polymorphonuclear leukocytes.
    Markert M; Allaz MJ; Frei J
    FEBS Lett; 1980 May; 113(2):225-30. PubMed ID: 6248360
    [No Abstract]   [Full Text] [Related]  

  • 5. A comparison of superoxide production by human eosinophils and neutrophils.
    Learn DB; Brestel EP
    Agents Actions; 1982 Oct; 12(4):485-8. PubMed ID: 6295109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical sensors for direct reagentless measurement of superoxide production by human neutrophils.
    McNeil CJ; Greenough KR; Weeks PA; Self CH; Cooper JM
    Free Radic Res Commun; 1992; 17(6):399-406. PubMed ID: 1337538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scavenging of neutrophil-derived superoxide anion by 1-hydroxyphenazine, a phenazine derivative associated with chronic Pseudomonas aeruginosa infection: relevance to cystic fibrosis.
    Muller M
    Biochim Biophys Acta; 1995 Dec; 1272(3):185-9. PubMed ID: 8541351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of alpha-tocopherol model compound by superoxide anion.
    Nishikimi M; Machlin LJ
    Arch Biochem Biophys; 1975 Oct; 170(2):684-9. PubMed ID: 172018
    [No Abstract]   [Full Text] [Related]  

  • 9. Lucigenin as mediator of superoxide production: revisited.
    Liochev SI; Fridovich I
    Free Radic Biol Med; 1998 Nov; 25(8):926-8. PubMed ID: 9840737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the electrochemistry of cytochrome c to the measurement of superoxide radical production.
    McNeil CJ; Smith KA; Bellavite P; Bannister JV
    Free Radic Res Commun; 1989; 7(2):89-96. PubMed ID: 2553552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide dismutase: the first twenty years (1968-1988).
    McCord JM; Fridovich I
    Free Radic Biol Med; 1988; 5(5-6):363-9. PubMed ID: 2855736
    [No Abstract]   [Full Text] [Related]  

  • 12. The rate of oxygen consumption and superoxide anion formation by stimulated human neutrophils. The effect of particle concentration and size.
    Green MJ; Hill HA; Tew DG
    FEBS Lett; 1987 May; 216(1):31-4. PubMed ID: 3034672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo-inhibitors of neutrophil superoxide production: evidence that soybean-derived polypeptides are superoxide dismutases.
    Abramovitz AS; Hong JY; Randolph V
    Biochem Biophys Res Commun; 1983 Nov; 117(1):22-9. PubMed ID: 6318748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of leukocyte superoxide anion production by cortisol administration to normal subjects.
    Nelson DH; Ruhmann-Wennhold A
    J Clin Endocrinol Metab; 1978 Apr; 46(4):702-5. PubMed ID: 225343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The production of oxygen-derived radicals by neutrophils from selenium-deficient cattle.
    Arthur JR; Boyne R; Hill HA; Okolow-Zubkowska MJ
    FEBS Lett; 1981 Nov; 135(1):187-90. PubMed ID: 6274686
    [No Abstract]   [Full Text] [Related]  

  • 17. Involvement of calcium, calmodulin and phospholipase A in the alteration of membrane dynamics and superoxide production of human neutrophils stimulated by phorbol myristate acetate.
    Stocker R; Richter C
    FEBS Lett; 1982 Oct; 147(2):243-6. PubMed ID: 6293870
    [No Abstract]   [Full Text] [Related]  

  • 18. A displaceable surface-bound superoxide stimulating factor on circulating human polymorphonuclear leukocytes.
    Tanswell AK; Lynn WS
    Biochem Biophys Res Commun; 1979 Oct; 90(3):911-6. PubMed ID: 228674
    [No Abstract]   [Full Text] [Related]  

  • 19. The pathophysiology of superoxide: roles in inflammation and ischemia.
    McCord JM; Roy RS
    Can J Physiol Pharmacol; 1982 Nov; 60(11):1346-52. PubMed ID: 6295573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemistry of oxygen radical species.
    Brunori M; Rotilio G
    Methods Enzymol; 1984; 105():22-35. PubMed ID: 6328182
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.