These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22009314)

  • 1. The effect of magnesium ion concentration on the fibrocartilage regeneration potential of goat costal chondrocytes.
    Hagandora CK; Tudares MA; Almarza AJ
    Ann Biomed Eng; 2012 Mar; 40(3):688-96. PubMed ID: 22009314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-ε-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel.
    Lee J; Choi WI; Tae G; Kim YH; Kang SS; Kim SE; Kim SH; Jung Y; Kim SH
    Acta Biomater; 2011 Jan; 7(1):244-57. PubMed ID: 20801240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative Potential of Mandibular Condyle Cartilage and Bone Cells Compared to Costal Cartilage Cells When Seeded in Novel Gelatin Based Hydrogels.
    Chin AR; Taboas JM; Almarza AJ
    Ann Biomed Eng; 2021 May; 49(5):1353-1363. PubMed ID: 33155145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering.
    Kalpakci KN; Kim EJ; Athanasiou KA
    Acta Biomater; 2011 Apr; 7(4):1710-8. PubMed ID: 21185408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.
    Johns DE; Athanasiou KA
    Cell Tissue Res; 2008 Sep; 333(3):439-47. PubMed ID: 18597118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint.
    Anderson DE; Athanasiou KA
    Arch Oral Biol; 2009 Feb; 54(2):138-45. PubMed ID: 19013549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering.
    Anderson DE; Athanasiou KA
    Ann Biomed Eng; 2008 Dec; 36(12):1992-2001. PubMed ID: 18830818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of collagen hydrolysate on chondrocyte-seeded agarose constructs.
    Elder SH; Borazjani A
    Biomed Mater Eng; 2009; 19(6):409-14. PubMed ID: 20231793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds.
    Gunja NJ; Athanasiou KA
    Biotechnol Bioeng; 2009 Jul; 103(4):808-16. PubMed ID: 19274749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli.
    Hoben GM; Athanasiou KA
    Biotechnol Bioeng; 2008 Jun; 100(3):587-98. PubMed ID: 18078296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model.
    Kang SW; Son SM; Lee JS; Lee ES; Lee KY; Park SG; Park JH; Kim BS
    J Biomed Mater Res A; 2006 Jun; 77(4):659-71. PubMed ID: 16514599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic compressive loading of image-guided tissue engineered meniscal constructs.
    Ballyns JJ; Bonassar LJ
    J Biomech; 2011 Feb; 44(3):509-16. PubMed ID: 20888562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of static-load-degenerated articular cartilage extracellular matrix by vitamin C supplementation.
    Sharma G; Saxena RK; Mishra P
    Cell Tissue Res; 2008 Oct; 334(1):111-20. PubMed ID: 18679720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS
    J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes.
    Jeong CG; Zhang H; Hollister SJ
    Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.
    Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC
    Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression.
    Nebelung S; Gavenis K; Lüring C; Zhou B; Mueller-Rath R; Stoffel M; Tingart M; Rath B
    Ann Anat; 2012 Jul; 194(4):351-8. PubMed ID: 22429869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerative Potential of Various Soft Polymeric Scaffolds in the Temporomandibular Joint Condyle.
    Chin AR; Gao J; Wang Y; Taboas JM; Almarza AJ
    J Oral Maxillofac Surg; 2018 Sep; 76(9):2019-2026. PubMed ID: 29550379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.