These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 22009325)

  • 41. Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris.
    Wang J; Sun XW; Jiao Z; Khoo E; Lee PS; Ma J; Demir HV
    Nanoscale; 2011 Nov; 3(11):4742-5. PubMed ID: 21989823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel boron nitride hollow nanoribbons.
    Chen ZG; Zou J; Liu G; Li F; Wang Y; Wang L; Yuan XL; Sekiguchi T; Cheng HM; Lu GQ
    ACS Nano; 2008 Oct; 2(10):2183-91. PubMed ID: 19206466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoscale compression of polymer microspheres by atomic force microscopy.
    Tan S; Sherman RL; Ford WT
    Langmuir; 2004 Aug; 20(17):7015-20. PubMed ID: 15301482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconfigurable, braced, three-dimensional DNA nanostructures.
    Goodman RP; Heilemann M; Doose S; Erben CM; Kapanidis AN; Turberfield AJ
    Nat Nanotechnol; 2008 Feb; 3(2):93-6. PubMed ID: 18654468
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.
    Cheng B; Cui S
    Top Curr Chem; 2015; 369():97-134. PubMed ID: 25860255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis.
    Cerf A; Tian HC; Craighead HG
    ACS Nano; 2012 Sep; 6(9):7928-34. PubMed ID: 22816516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Manipulating Kondo temperature via single molecule switching.
    Iancu V; Deshpande A; Hla SW
    Nano Lett; 2006 Apr; 6(4):820-3. PubMed ID: 16608290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of nanofibers in the Chinese herbal medicine: Yunnan Baiyao.
    Lenaghan SC; Xia L; Zhang M
    J Biomed Nanotechnol; 2009 Oct; 5(5):472-6. PubMed ID: 20201420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fully automated single-molecule force spectroscopy for screening applications.
    Struckmeier J; Wahl R; Leuschner M; Nunes J; Janovjak H; Geisler U; Hofmann G; Jähnke T; Müller DJ
    Nanotechnology; 2008 Sep; 19(38):384020. PubMed ID: 21832579
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances.
    Ryvlin D; Dumele O; Linke A; Fankhauser D; Schweizer WB; Diederich F; Waldvogel SR
    Chempluschem; 2017 Mar; 82(3):493-497. PubMed ID: 31962013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complexation between pillar[5]arenes and a secondary ammonium salt.
    Han C; Yu G; Zheng B; Huang F
    Org Lett; 2012 Apr; 14(7):1712-5. PubMed ID: 22416904
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlling the size and morphology of supramolecular assemblies of viologen-resorcin[4]arene cavitands.
    Kashapov RR; Kharlamov SV; Sultanova ED; Mukhitova RK; Kudryashova YR; Zakharova LY; Ziganshina AY; Konovalov AI
    Chemistry; 2014 Oct; 20(43):14018-25. PubMed ID: 25208760
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding.
    Milić J; Zalibera M; Talaat D; Nomrowski J; Trapp N; Ruhlmann L; Boudon C; Wenger OS; Savitsky A; Lubitz W; Diederich F
    Chemistry; 2018 Jan; 24(6):1431-1440. PubMed ID: 29251363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Higher Analogues of Resorcinarenes and Pyrogallolarenes: Bricks for Supramolecular Chemistry.
    Chwastek M; Szumna A
    Org Lett; 2020 Sep; 22(17):6838-6841. PubMed ID: 32820930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Switchable ternary nanoporous supramolecular network on photo-regulation.
    Shen YT; Deng K; Zhang XM; Feng W; Zeng QD; Wang C; Gong JR
    Nano Lett; 2011 Aug; 11(8):3245-50. PubMed ID: 21732625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Quest for Molecular Grippers: Photo-Electric Control of Molecular Gripping Machinery.
    Milić JV; Diederich F
    Chemistry; 2019 Jun; 25(36):8440-8452. PubMed ID: 31111578
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reversible structure transformation between protein nanocages and nanorods controlled by small molecules.
    Zhang X; Zhang T; Wang Y; Liu Y; Zang J; Zhao G
    Chem Commun (Camb); 2021 Dec; 57(96):12996-12999. PubMed ID: 34796885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water-soluble supramolecular bowls formed by intra-clipping of resorcin[4]arene-based ligands with Pd(II) ions.
    Park SJ; Shin DM; Sakamoto S; Yamaguchi K; Chung YK; Lah MS; Hong JI
    Chem Commun (Camb); 2003 Apr; (8):998-9. PubMed ID: 12744338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link.
    Caprice K; Pupier M; Bauzá A; Frontera A; Cougnon FBL
    Angew Chem Int Ed Engl; 2019 Jun; 58(24):8053-8057. PubMed ID: 30973659
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resorcin[4]arene-based multidentate phosphate ligands with superior binding affinity for nanocrystal surfaces.
    Nemat SJ; Van den Eynden D; Deblock L; Heilmann M; Köster JM; Parvizian M; Tiefenbacher K; De Roo J
    Chem Commun (Camb); 2021 May; 57(38):4694-4697. PubMed ID: 33977984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.