BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22009353)

  • 1. Exploring the zebra finch Taeniopygia guttata as a novel animal model for the speech-language deficit of fragile X syndrome.
    Winograd C; Ceman S
    Results Probl Cell Differ; 2012; 54():181-97. PubMed ID: 22009353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of fragile X mental retardation protein within the vocal control system of developing and adult male zebra finches.
    Winograd C; Clayton D; Ceman S
    Neuroscience; 2008 Nov; 157(1):132-42. PubMed ID: 18835331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ultrasonic vocalizations of Fragile X mice.
    Belagodu AP; Johnson AM; Galvez R
    Behav Brain Res; 2016 Sep; 310():76-83. PubMed ID: 27142239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.
    Condro MC; White SA
    J Comp Neurol; 2014 Jan; 522(1):169-85. PubMed ID: 23818387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lateral differences in the forebrain and midbrain control of learned vocalizations in adult male Zebra Finch (Taeniopygia guttata)].
    Zeng XY; Li DF
    Dongwuxue Yanjiu; 2013 Feb; 34(1):1-7. PubMed ID: 23389971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenomic insights into the behavioral and vocal development of the zebra finch.
    Hauber ME; Louder MI; Griffith SC
    Elife; 2021 Jun; 10():. PubMed ID: 34106827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric development of the zebra finch brain throughout the first 200 days of post-hatch life traced by in vivo MRI.
    Hamaide J; De Groof G; Van Ruijssevelt L; Lukacova K; Van Audekerke J; Verhoye M; Van der Linden A
    Neuroimage; 2018 Dec; 183():227-238. PubMed ID: 30107257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch.
    Jung KM; Kim YM; Keyte AL; Biegler MT; Rengaraj D; Lee HJ; Mello CV; Velho TAF; Fedrigo O; Haase B; Jarvis ED; Han JY
    FASEB J; 2019 Dec; 33(12):13825-13836. PubMed ID: 31604057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song.
    Derégnaucourt S; Poirier C; Kant AV; Linden AV; Gahr M
    J Physiol Paris; 2013 Jun; 107(3):210-8. PubMed ID: 22982543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Female Social Feedback Reveals Non-imitative Mechanisms of Vocal Learning in Zebra Finches.
    Carouso-Peck S; Goldstein MH
    Curr Biol; 2019 Feb; 29(4):631-636.e3. PubMed ID: 30713105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the GABA(A) receptor gamma4-subunit gene in discrete nuclei within the zebra finch song system.
    Thode C; Güttinger HR; Darlison MG
    Neuroscience; 2008 Nov; 157(1):143-52. PubMed ID: 18824085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ICAM5 as a Novel Target for Treating Cognitive Impairment in Fragile X Syndrome.
    Pei YP; Wang YY; Liu D; Lei HY; Yang ZH; Zhang ZW; Han M; Cheng K; Chen YS; Li JQ; Cheng GR; Xu L; Wu QM; McClintock SM; Yang Y; Zhang Y; Zeng Y
    J Neurosci; 2020 Feb; 40(6):1355-1365. PubMed ID: 31882402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholinesterase in central vocal control nuclei of the zebra finch (Taeniopygia guttata).
    Sadananda M
    J Biosci; 2004 Jun; 29(2):189-200. PubMed ID: 15286416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior-linked FoxP2 regulation enables zebra finch vocal learning.
    Heston JB; White SA
    J Neurosci; 2015 Feb; 35(7):2885-94. PubMed ID: 25698728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny.
    Layden EA; Schertz KE; London SE; Berman MG
    Neuroimage; 2019 Jul; 195():113-127. PubMed ID: 30940612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zebra finch neuropeptidome: prediction, detection and expression.
    Xie F; London SE; Southey BR; Annangudi SP; Amare A; Rodriguez-Zas SL; Clayton DF; Sweedler JV
    BMC Biol; 2010 Apr; 8():28. PubMed ID: 20359331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory Processing Phenotypes in Fragile X Syndrome.
    Rais M; Binder DK; Razak KA; Ethell IM
    ASN Neuro; 2018; 10():1759091418801092. PubMed ID: 30231625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Song Deficits after Lentivirus-Mediated Knockdown of FoxP1, FoxP2, or FoxP4 in Area X of Juvenile Zebra Finches.
    Norton P; Barschke P; Scharff C; Mendoza E
    J Neurosci; 2019 Dec; 39(49):9782-9796. PubMed ID: 31641053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The zebra finch, Taeniopygia guttata: an avian model for investigating the neurobiological basis of vocal learning.
    Mello CV
    Cold Spring Harb Protoc; 2014 Oct; 2014(12):1237-42. PubMed ID: 25342070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch.
    Burkett ZD; Day NF; Kimball TH; Aamodt CM; Heston JB; Hilliard AT; Xiao X; White SA
    Elife; 2018 Jan; 7():. PubMed ID: 29360038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.