BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22009355)

  • 1. Taking STEPs forward to understand fragile X syndrome.
    Goebel-Goody SM; Lombroso PJ
    Results Probl Cell Differ; 2012; 54():223-41. PubMed ID: 22009355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model.
    Goebel-Goody SM; Wilson-Wallis ED; Royston S; Tagliatela SM; Naegele JR; Lombroso PJ
    Genes Brain Behav; 2012 Jul; 11(5):586-600. PubMed ID: 22405502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysregulated NMDA-Receptor Signaling Inhibits Long-Term Depression in a Mouse Model of Fragile X Syndrome.
    Toft AK; Lundbye CJ; Banke TG
    J Neurosci; 2016 Sep; 36(38):9817-27. PubMed ID: 27656021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal-enriched Tyrosine Protein Phosphatase (STEP) in the Mechanisms of Depressive Disorders.
    Kulikova E; Kulikov A
    Curr Protein Pept Sci; 2017 Aug; 18(11):1152-1162. PubMed ID: 28699511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome.
    Nosyreva ED; Huber KM
    J Neurophysiol; 2006 May; 95(5):3291-5. PubMed ID: 16452252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolin-1-Mediated Cholesterol Accumulation Contributes to Exaggerated mGluR-Dependent Long-Term Depression and Impaired Cognition in Fmr1 Knockout Mice.
    Luo L; Yang L; Zhang K; Zhou SM; Wang Y; Yang LK; Feng B; Liu SB; Wu YM; Zhao MG; Yang Q
    Mol Neurobiol; 2023 Jun; 60(6):3379-3395. PubMed ID: 36854997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired activity-dependent FMRP translation and enhanced mGluR-dependent LTD in Fragile X premutation mice.
    Iliff AJ; Renoux AJ; Krans A; Usdin K; Sutton MA; Todd PK
    Hum Mol Genet; 2013 Mar; 22(6):1180-92. PubMed ID: 23250915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome.
    Kim SH; Markham JA; Weiler IJ; Greenough WT
    Proc Natl Acad Sci U S A; 2008 Mar; 105(11):4429-34. PubMed ID: 18332424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome.
    Maurin T; Melancia F; Jarjat M; Castro L; Costa L; Delhaye S; Khayachi A; Castagnola S; Mota E; Di Giorgio A; Servadio M; Drozd M; Poupon G; Schiavi S; Sardone L; Azoulay S; Ciranna L; Martin S; Vincent P; Trezza V; Bardoni B
    Cereb Cortex; 2019 Jul; 29(8):3241-3252. PubMed ID: 30137253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STEP inhibition reverses behavioral, electrophysiologic, and synaptic abnormalities in Fmr1 KO mice.
    Chatterjee M; Kurup PK; Lundbye CJ; Hugger Toft AK; Kwon J; Benedict J; Kamceva M; Banke TG; Lombroso PJ
    Neuropharmacology; 2018 Jan; 128():43-53. PubMed ID: 28943283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BDNF in fragile X syndrome.
    Castrén ML; Castrén E
    Neuropharmacology; 2014 Jan; 76 Pt C():729-36. PubMed ID: 23727436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors.
    Nakamoto M; Nalavadi V; Epstein MP; Narayanan U; Bassell GJ; Warren ST
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15537-42. PubMed ID: 17881561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of GluN2A NMDA receptors ameliorates synaptic plasticity deficits in the Fmr1
    Lundbye CJ; Toft AKH; Banke TG
    J Physiol; 2018 Oct; 596(20):5017-5031. PubMed ID: 30132892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice.
    Bhattacharya A; Kaphzan H; Alvarez-Dieppa AC; Murphy JP; Pierre P; Klann E
    Neuron; 2012 Oct; 76(2):325-37. PubMed ID: 23083736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis.
    Auerbach BD; Bear MF
    J Neurophysiol; 2010 Aug; 104(2):1047-51. PubMed ID: 20554840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome.
    Suvrathan A; Hoeffer CA; Wong H; Klann E; Chattarji S
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11591-6. PubMed ID: 20534533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of long-term depression by soluble amyloid β protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3.
    Chen X; Lin R; Chang L; Xu S; Wei X; Zhang J; Wang C; Anwyl R; Wang Q
    Neuroscience; 2013 Dec; 253():435-43. PubMed ID: 24012839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group I mGluR antagonist rescues the deficit of D1-induced LTP in a mouse model of fragile X syndrome.
    Xu ZH; Yang Q; Feng B; Liu SB; Zhang N; Xing JH; Li XQ; Wu YM; Gao GD; Zhao MG
    Mol Neurodegener; 2012 May; 7():24. PubMed ID: 22640474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 'danse macabre': tau and Fyn in STEP with amyloid beta to facilitate induction of synaptic depression and excitotoxicity.
    Boehm J
    Eur J Neurosci; 2013 Jun; 37(12):1925-30. PubMed ID: 23773061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression.
    Niere F; Wilkerson JR; Huber KM
    J Neurosci; 2012 Apr; 32(17):5924-36. PubMed ID: 22539853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.