These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 22010108)
1. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Zhang CJ; Zhao BC; Ge WN; Zhang YF; Song Y; Sun DY; Guo Y Plant Physiol; 2011 Dec; 157(4):1884-99. PubMed ID: 22010108 [TBL] [Abstract][Full Text] [Related]
2. OsTRXh1 regulates the redox state of the apoplast and influences stress responses in rice. Zhang CJ; Guo Y Plant Signal Behav; 2012 Mar; 7(3):440-2. PubMed ID: 22499210 [TBL] [Abstract][Full Text] [Related]
3. Two h-Type Thioredoxins Interact with the E2 Ubiquitin Conjugase PHO2 to Fine-Tune Phosphate Homeostasis in Rice. Ying Y; Yue W; Wang S; Li S; Wang M; Zhao Y; Wang C; Mao C; Whelan J; Shou H Plant Physiol; 2017 Jan; 173(1):812-824. PubMed ID: 27895204 [TBL] [Abstract][Full Text] [Related]
4. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Song SY; Chen Y; Chen J; Dai XY; Zhang WH Planta; 2011 Aug; 234(2):331-45. PubMed ID: 21448719 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of a partial fragment of the salt-responsive gene OsNUC1 enhances salt adaptation in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) during salt stress. Sripinyowanich S; Chamnanmanoontham N; Udomchalothorn T; Maneeprasopsuk S; Santawee P; Buaboocha T; Qu LJ; Gu H; Chadchawan S Plant Sci; 2013 Dec; 213():67-78. PubMed ID: 24157209 [TBL] [Abstract][Full Text] [Related]
6. OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Dansana PK; Kothari KS; Vij S; Tyagi AK Plant Cell Rep; 2014 Sep; 33(9):1425-40. PubMed ID: 24965356 [TBL] [Abstract][Full Text] [Related]
7. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. Wang ZQ; Li GZ; Gong QQ; Li GX; Zheng SJ BMC Plant Biol; 2015 May; 15():123. PubMed ID: 25990386 [TBL] [Abstract][Full Text] [Related]
8. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity. Hazman M; Hause B; Eiche E; Nick P; Riemann M J Exp Bot; 2015 Jun; 66(11):3339-52. PubMed ID: 25873666 [TBL] [Abstract][Full Text] [Related]
9. A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors. You J; Zong W; Du H; Hu H; Xiong L Plant Mol Biol; 2014 Apr; 84(6):693-705. PubMed ID: 24337801 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Sun SJ; Guo SQ; Yang X; Bao YM; Tang HJ; Sun H; Huang J; Zhang HS J Exp Bot; 2010 Jun; 61(10):2807-18. PubMed ID: 20460361 [TBL] [Abstract][Full Text] [Related]
11. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Duan J; Zhang M; Zhang H; Xiong H; Liu P; Ali J; Li J; Li Z Plant Sci; 2012 Nov; 196():143-51. PubMed ID: 23017909 [TBL] [Abstract][Full Text] [Related]
12. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Jan A; Maruyama K; Todaka D; Kidokoro S; Abo M; Yoshimura E; Shinozaki K; Nakashima K; Yamaguchi-Shinozaki K Plant Physiol; 2013 Mar; 161(3):1202-16. PubMed ID: 23296688 [TBL] [Abstract][Full Text] [Related]
13. Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Hu Y; Wu Q; Peng Z; Sprague SA; Wang W; Park J; Akhunov E; Jagadish KSV; Nakata PA; Cheng N; Hirschi KD; White FF; Park S Sci Rep; 2017 Nov; 7(1):15950. PubMed ID: 29162892 [TBL] [Abstract][Full Text] [Related]
14. An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. Huang L; Zhang M; Jia J; Zhao X; Huang X; Ji E; Ni L; Jiang M Plant Cell Physiol; 2018 May; 59(5):916-929. PubMed ID: 29432551 [TBL] [Abstract][Full Text] [Related]
15. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Xu F; Tang J; Gao S; Cheng X; Du L; Chu C Plant J; 2019 Dec; 100(5):1036-1051. PubMed ID: 31436865 [TBL] [Abstract][Full Text] [Related]
16. Rice OsWRKY50 Mediates ABA-Dependent Seed Germination and Seedling Growth, and ABA-Independent Salt Stress Tolerance. Huang S; Hu L; Zhang S; Zhang M; Jiang W; Wu T; Du X Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445331 [TBL] [Abstract][Full Text] [Related]
17. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Du H; Wu N; Chang Y; Li X; Xiao J; Xiong L Plant Mol Biol; 2013 Nov; 83(4-5):475-88. PubMed ID: 23846670 [TBL] [Abstract][Full Text] [Related]
18. The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice. Wang X; Zhang MM; Wang YJ; Gao YT; Li R; Wang GF; Li WQ; Liu WT; Chen KM Physiol Plant; 2016 Apr; 156(4):421-43. PubMed ID: 26400148 [TBL] [Abstract][Full Text] [Related]
19. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. Guo C; Luo C; Guo L; Li M; Guo X; Zhang Y; Wang L; Chen L J Integr Plant Biol; 2016 May; 58(5):492-502. PubMed ID: 26172270 [TBL] [Abstract][Full Text] [Related]
20. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Hu H; You J; Fang Y; Zhu X; Qi Z; Xiong L Plant Mol Biol; 2008 May; 67(1-2):169-81. PubMed ID: 18273684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]