These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22010142)

  • 1. Optical sensor position indicator for neonatal MEG.
    Urban E; Wakai RT
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):255-62. PubMed ID: 22010142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realignment of magnetoencephalographic data for group analysis in the sensor domain.
    Ross B; Charron RE; Jamali S
    J Clin Neurophysiol; 2011 Apr; 28(2):190-201. PubMed ID: 21399522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High precision anatomy for MEG.
    Troebinger L; López JD; Lutti A; Bradbury D; Bestmann S; Barnes G
    Neuroimage; 2014 Feb; 86():583-91. PubMed ID: 23911673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer.
    Vesanen PT; Nieminen JO; Zevenhoven KC; Dabek J; Parkkonen LT; Zhdanov AV; Luomahaara J; Hassel J; Penttilä J; Simola J; Ahonen AI; Mäkelä JP; Ilmoniemi RJ
    Magn Reson Med; 2013 Jun; 69(6):1795-804. PubMed ID: 22807201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEG-compatible force sensor.
    Boonstra TW; Clairbois HE; Daffertshofer A; Verbunt J; van Dijk BW; Beek PJ
    J Neurosci Methods; 2005 Jun; 144(2):193-6. PubMed ID: 15910977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical tracking with two markers for robust prospective motion correction for brain imaging.
    Singh A; Zahneisen B; Keating B; Herbst M; Chang L; Zaitsev M; Ernst T
    MAGMA; 2015 Dec; 28(6):523-34. PubMed ID: 26121941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography.
    Nenonen J; Nurminen J; Kičić D; Bikmullina R; Lioumis P; Jousmäki V; Taulu S; Parkkonen L; Putaala M; Kähkönen S
    Clin Neurophysiol; 2012 Nov; 123(11):2180-91. PubMed ID: 22633918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration.
    Pfeiffer C; Ruffieux S; Andersen LM; Kalabukhov A; Winkler D; Oostenveld R; Lundqvist D; Schneiderman JF
    Neuroimage; 2020 May; 212():116686. PubMed ID: 32119981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of vision-based head-trackers for assistive devices.
    Guness SP; Deravi F; Sirlantzis K; Pepper MG; Sakel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4804-7. PubMed ID: 23367002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible head-casts for high spatial precision MEG.
    Meyer SS; Bonaiuto J; Lim M; Rossiter H; Waters S; Bradbury D; Bestmann S; Brookes M; Callaghan MF; Weiskopf N; Barnes GR
    J Neurosci Methods; 2017 Jan; 276():38-45. PubMed ID: 27887969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of motion artifacts in electrocardiogram monitoring using an optical sensor.
    Liu Y; Pecht MG
    Biomed Instrum Technol; 2011; 45(2):155-63. PubMed ID: 21466338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective motion correction for magnetic resonance spectroscopy using single camera Retro-Grate reflector optical tracking.
    Andrews-Shigaki BC; Armstrong BS; Zaitsev M; Ernst T
    J Magn Reson Imaging; 2011 Feb; 33(2):498-504. PubMed ID: 21274994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multichannel system based on a high sensitivity superconductive sensor for magnetoencephalography.
    Rombetto S; Granata C; Vettoliere A; Russo M
    Sensors (Basel); 2014 Jul; 14(7):12114-26. PubMed ID: 25006995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast robust subject-independent magnetoencephalographic source localization using an artificial neural network.
    Jun SC; Pearlmutter BA
    Hum Brain Mapp; 2005 Jan; 24(1):21-34. PubMed ID: 15593270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time correction by optical tracking with integrated geometric distortion correction for reducing motion artifacts in functional MRI.
    Rotenberg D; Chiew M; Ranieri S; Tam F; Chopra R; Graham SJ
    Magn Reson Med; 2013 Mar; 69(3):734-48. PubMed ID: 22585554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEG in the presurgical investigation of temporal lobe epilepsy.
    Quesney LF; Ortiz T
    J Clin Neurophysiol; 2004; 21(2):132. PubMed ID: 15284605
    [No Abstract]   [Full Text] [Related]  

  • 17. The Importance of Properly Compensating for Head Movements During MEG Acquisition Across Different Age Groups.
    Larson E; Taulu S
    Brain Topogr; 2017 Mar; 30(2):172-181. PubMed ID: 27696246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The design and implementation of a motion correction scheme for neurological PET.
    Bloomfield PM; Spinks TJ; Reed J; Schnorr L; Westrip AM; Livieratos L; Fulton R; Jones T
    Phys Med Biol; 2003 Apr; 48(8):959-78. PubMed ID: 12741495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head position in the MEG helmet affects the sensitivity to anterior sources.
    Marinkovic K; Cox B; Reid K; Halgren E
    Neurol Clin Neurophysiol; 2004 Nov; 2004():30. PubMed ID: 16012659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective real-time correction for arbitrary head motion using active markers.
    Ooi MB; Krueger S; Thomas WJ; Swaminathan SV; Brown TR
    Magn Reson Med; 2009 Oct; 62(4):943-54. PubMed ID: 19488989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.