BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 2201024)

  • 21. Histone H3 N-terminus regulates higher order structure of yeast heterochromatin.
    Sperling AS; Grunstein M
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13153-9. PubMed ID: 19666585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sir3 and epigenetic inheritance of silent chromatin in Saccharomyces cerevisiae.
    Motwani T; Poddar M; Holmes SG
    Mol Cell Biol; 2012 Jul; 32(14):2784-93. PubMed ID: 22586263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3.
    Carmen AA; Milne L; Grunstein M
    J Biol Chem; 2002 Feb; 277(7):4778-81. PubMed ID: 11714726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific repression of the yeast silent mating locus HMR by an adjacent telomere.
    Thompson JS; Johnson LM; Grunstein M
    Mol Cell Biol; 1994 Jan; 14(1):446-55. PubMed ID: 8264612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo.
    Mann RK; Grunstein M
    EMBO J; 1992 Sep; 11(9):3297-306. PubMed ID: 1505519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa.
    Ravindra A; Weiss K; Simpson RT
    Mol Cell Biol; 1999 Dec; 19(12):7944-50. PubMed ID: 10567520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
    Imai S; Armstrong CM; Kaeberlein M; Guarente L
    Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae.
    Martin AM; Pouchnik DJ; Walker JL; Wyrick JJ
    Genetics; 2004 Jul; 167(3):1123-32. PubMed ID: 15280228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome structural changes during derepression of silent mating-type loci in yeast.
    Chen-Cleland TA; Smith MM; Le S; Sternglanz R; Allfrey VG
    J Biol Chem; 1993 Jan; 268(2):1118-24. PubMed ID: 8419318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a novel allele of SIR3 defective in the maintenance, but not the establishment, of silencing in Saccharomyces cerevisiae.
    Enomoto S; Johnston SD; Berman J
    Genetics; 2000 Jun; 155(2):523-38. PubMed ID: 10835378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extragenic suppressors of mar2(sir3) mutations in Saccharomyces cerevisiae.
    Lin CI; Livi GP; Ivy JM; Klar AJ
    Genetics; 1990 Jun; 125(2):321-31. PubMed ID: 2199314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two classes of sir3 mutants enhance the sir1 mutant mating defect and abolish telomeric silencing in Saccharomyces cerevisiae.
    Stone EM; Reifsnyder C; McVey M; Gazo B; Pillus L
    Genetics; 2000 Jun; 155(2):509-22. PubMed ID: 10835377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3.
    Moazed D; Kistler A; Axelrod A; Rine J; Johnson AD
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2186-91. PubMed ID: 9122169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sir3-nucleosome interactions in spreading of silent chromatin in Saccharomyces cerevisiae.
    Buchberger JR; Onishi M; Li G; Seebacher J; Rudner AD; Gygi SP; Moazed D
    Mol Cell Biol; 2008 Nov; 28(22):6903-18. PubMed ID: 18794362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dominant mutants of the Saccharomyces cerevisiae ASF1 histone chaperone bypass the need for CAF-1 in transcriptional silencing by altering histone and Sir protein recruitment.
    Tamburini BA; Carson JJ; Linger JG; Tyler JK
    Genetics; 2006 Jun; 173(2):599-610. PubMed ID: 16582440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The sum1-1 mutation affects silent mating-type gene transcription in Saccharomyces cerevisiae.
    Livi GP; Hicks JB; Klar AJ
    Mol Cell Biol; 1990 Jan; 10(1):409-12. PubMed ID: 2403645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae.
    Yang B; Britton J; Kirchmaier AL
    J Mol Biol; 2008 Sep; 381(4):826-44. PubMed ID: 18619469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histone H3 lysine 36 methylation antagonizes silencing in Saccharomyces cerevisiae independently of the Rpd3S histone deacetylase complex.
    Tompa R; Madhani HD
    Genetics; 2007 Feb; 175(2):585-93. PubMed ID: 17179083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetic inheritance of transcriptional states in S. cerevisiae.
    Pillus L; Rine J
    Cell; 1989 Nov; 59(4):637-47. PubMed ID: 2684414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.