These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22010445)

  • 1. [Reactive oxygen species and 3,4-dihydroxyphenylacetaldehyde in pathogenesis of Parkinson disease].
    Rybakowska I; Szreder G; Kaletha K; Barwina M; Waldman W; Sein Anand J
    Przegl Lek; 2011; 68(8):486-7. PubMed ID: 22010445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catechols in post-mortem brain of patients with Parkinson disease.
    Goldstein DS; Sullivan P; Holmes C; Kopin IJ; Basile MJ; Mash DC
    Eur J Neurol; 2011 May; 18(5):703-10. PubMed ID: 21073636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson's disease pathogenesis.
    Li SW; Lin TS; Minteer S; Burke WJ
    Brain Res Mol Brain Res; 2001 Sep; 93(1):1-7. PubMed ID: 11532332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by the dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde.
    Vanle BC; Florang VR; Murry DJ; Aguirre AL; Doorn JA
    Biochem Biophys Res Commun; 2017 Oct; 492(2):275-281. PubMed ID: 28830811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal.
    Florang VR; Rees JN; Brogden NK; Anderson DG; Hurley TD; Doorn JA
    Neurotoxicology; 2007 Jan; 28(1):76-82. PubMed ID: 16956664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson's disease.
    Zhu Y; Hoell P; Ahlemeyer B; Sure U; Bertalanffy H; Krieglstein J
    Neurochem Int; 2007 Feb; 50(3):507-16. PubMed ID: 17169462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Free radicals and ailing proteins--the culprits behind Parkinson disease?].
    Smith R; Lotharius J; Brundin P
    Lakartidningen; 2003 Apr; 100(15):1324-6, 1329-30. PubMed ID: 12739402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson's disease: a case for the selective vulnerability of the substantia nigra.
    Galvin JE
    Acta Neuropathol; 2006 Aug; 112(2):115-26. PubMed ID: 16791599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural toxin implicated as triggering Parkinson's disease.
    Pak J Biol Sci; 2011 Feb; 14(3):255. PubMed ID: 21870660
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde.
    Lamensdorf I; Eisenhofer G; Harvey-White J; Hayakawa Y; Kirk K; Kopin IJ
    J Neurosci Res; 2000 May; 60(4):552-8. PubMed ID: 10797558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systems Model of Parkinson's Disease Using Biochemical Systems Theory.
    Sasidharakurup H; Melethadathil N; Nair B; Diwakar S
    OMICS; 2017 Aug; 21(8):454-464. PubMed ID: 28816645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3,4-dihydroxyphenylacetaldehyde: a potential target for neuroprotective therapy in Parkinson's disease.
    Burke WJ
    Curr Drug Targets CNS Neurol Disord; 2003 Apr; 2(2):143-8. PubMed ID: 12769806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone.
    Anderson DG; Mariappan SV; Buettner GR; Doorn JA
    J Biol Chem; 2011 Jul; 286(30):26978-86. PubMed ID: 21642436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing
    Jinsmaa Y; Isonaka R; Sharabi Y; Goldstein DS
    J Pharmacol Exp Ther; 2020 Feb; 372(2):157-165. PubMed ID: 31744850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells.
    Lamensdorf I; Eisenhofer G; Harvey-White J; Nechustan A; Kirk K; Kopin IJ
    Brain Res; 2000 Jun; 868(2):191-201. PubMed ID: 10854571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benomyl, aldehyde dehydrogenase, DOPAL, and the catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease.
    Casida JE; Ford B; Jinsmaa Y; Sullivan P; Cooney A; Goldstein DS
    Chem Res Toxicol; 2014 Aug; 27(8):1359-61. PubMed ID: 25045800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate.
    Jinsmaa Y; Florang VR; Rees JN; Anderson DG; Strack S; Doorn JA
    Chem Res Toxicol; 2009 May; 22(5):835-41. PubMed ID: 19388687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An endogenous dopaminergic neurotoxin: implication for Parkinson's disease.
    Mattammal MB; Haring JH; Chung HD; Raghu G; Strong R
    Neurodegeneration; 1995 Sep; 4(3):271-81. PubMed ID: 8581559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases.
    Burke WJ; Li SW; Chung HD; Ruggiero DA; Kristal BS; Johnson EM; Lampe P; Kumar VB; Franko M; Williams EA; Zahm DS
    Neurotoxicology; 2004 Jan; 25(1-2):101-15. PubMed ID: 14697885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.